单选题 (共 3 题 ),每题只有一个选项正确
函数 $f(x)$ 在 $[a, b]$ 上连续是 $f(x)$ 在 $[a, b]$ 上可积的
$\text{A.}$ 充要条件
$\text{B.}$ 必要条件
$\text{C.}$ 充分条件
$\text{D.}$ 非必要非充分条件
设曲线 $L: y=\ln x$, 则
$\text{A.}$ $L$ 在 $\left(\frac{\sqrt{2}}{2},-\frac{\ln 2}{2}\right)$ 点取得最小曲率半径 $\frac{3 \sqrt{3}}{2}$.
$\text{B.}$ $L$ 在 $\left(\frac{\sqrt{2}}{2},-\frac{\ln 2}{2}\right)$ 点取得最大曲率半径 $\frac{3 \sqrt{3}}{2}$.
$\text{C.}$ $L$ 在 $\left(\frac{\mathrm{e}}{2}, 1-\ln 2\right)$ 点取得最小曲率半径 $\frac{\sqrt{3}}{2}$.
$\text{D.}$ $L$ 在 $\left(\frac{\mathrm{e}}{2}, 1-\ln 2\right)$ 点取得最大曲率半径 $\frac{\sqrt{3}}{2}$.
$y^{\prime \prime}-4 y^{\prime}+4 y=x^2 \mathrm{e}^{2 x}$ 的一个特解可设为 ( ), 其中 $A, B, C$ 为常数.
$\text{A.}$ $(A x+B) x^2 \mathrm{e}^{2 x}$
$\text{B.}$ $(A x+B) x \mathrm{e}^{2 x}$
$\text{C.}$ $\left(A x^2+B x+C\right) \mathrm{e}^{2 x}$
$\text{D.}$ $\left(A x^2+B x+C\right) x^2 \mathrm{e}^{2 x}$
填空题 (共 3 题 ),请把答案直接填写在答题纸上
$\int_1^{+\infty} \frac{x^2}{x^6+1} \mathrm{~d} x=$
已知当 $x \rightarrow 0$ 时, $\left(1+a x^{2}\right)^{\frac{1}{3}}-1$ 与 $\cos x-1$ 是等价无穷小, 则常数 $a=$
函数 $F(x)=\int_{1}^{x}\left(2-\frac{1}{\sqrt{t}}\right) d t(x>0)$ 的单调减少区间为