考研数学
重点科目
其它科目

科数网

考研数学-0725-04

数学

单选题 (共 6 题 ),每题只有一个选项正确
已知函数 $f(x)$ 具有任意阶导数, 且 $f^{\prime}(x)=[f(x)]^{2}$, 则当 $n$ 为大于 2 的正整数时, $f(x)$ 的 $n$ 阶导数 $f^{n}(x)$ 是
$\text{A.}$ $n ![f(x)]^{n+1}$ $\text{B.}$ $n[f(x)]^{n+1}$ $\text{C.}$ $[f(x)]^{2 n}$ $\text{D.}$ $n ![f(x)]^{2 n}$

设 $f(x)=3 x^{3}+x^{2}|x|$, 则使 $f^{(n)}(0)$ 存在的最高阶数 $n$ 为 ( )
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

已知函数 $f(x)$ 具有任意阶导数,且 $f^{\prime}(x)=[f(x)]^2$ ,则当
$n$ 为大于 2 的正整数时, $f(x)$ 的 $n$ 阶导数 $f^{(n)}(x)$ 是
$\text{A.}$ $n![f(x)]^{n+1}$ $\text{B.}$ $n[f(x)]^{n+1}$ $\text{C.}$ $[f(x)]^{2 n}$ $\text{D.}$ $ n![f(x)]^{2 n}$

若 $f(-x)=f(x)(-\infty < x < +\infty)$, 且在 $(-\infty, 0)$ 内 $f^{\prime}(x)>0, f^{\prime \prime}(x) < 0$ ,则 $f(x)$ 在 $(0,+\infty)$ 内
$\text{A.}$ $f^{\prime}(x)>0, \quad f^{\prime \prime}(x) < 0$ $\text{B.}$ $f^{\prime}(x)>0, \quad f^{\prime \prime}(x)>0$ $\text{C.}$ $f^{\prime}(x) < 0, \quad f^{\prime \prime}(x) < 0$ $\text{D.}$ $f^{\prime}(x) < 0, \quad f^{\prime \prime}(x)>0$

已知函数 $y=y(x)$ 在任意点 $x$ 处的增量
$$
\Delta y=\frac{y \Delta x}{1+x^2}+\alpha,
$$
且当 $\Delta x \rightarrow 0$ 时, $\alpha$ 是 $\Delta x$ 的高阶无穷小量,$y(0)=\pi $
$y(1)$ 等于
$\text{A.}$ $2 \pi$ $\text{B.}$ $\pi$ $\text{C.}$ $e^{\frac{\pi}{4}}$ $\text{D.}$ $\pi e^{\frac{\pi}{4}}$

曲线 $y=(x-1)^2(x-3)^2$ 的拐点个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

试卷二维码

分享此二维码到群,让更多朋友参与