单选题 (共 5 题 ),每题只有一个选项正确
设在区间 $[a, b]$ 上 $f(x)>0, f^{\prime}(x) < 0, f^{\prime \prime}(x)>0$ ,令
$$
\begin{aligned}
S_1 & =\int_a^b f(x) \mathrm{d} x, S_2=f(b)(b-a) \\
S_3 & =\frac{1}{2}[f(a)+f(b)](b-a)
\end{aligned}
$$
则
$\text{A.}$ $S_1 < S_2 < S_3$
$\text{B.}$ $S_2 < S_1 < S_3$
$\text{C.}$ $S_3 < S_1 < S_2$
$\text{D.}$ $S_2 < S_3 < S_1$
设在区间 $[a, b]$ 上 $f(x)>0, f^{\prime}(x) < 0, f^{\prime \prime}(x)>0$ ,令
$$
\begin{aligned}
& S_1=\int_a^b f(x) \mathrm{d} x, S_2=f(b)(b-a), \\
& S_3=\frac{1}{2}[f(a)+f(b)](b-a)
\end{aligned}
$$
则
$\text{A.}$ $S_1 < S_2 < S_3$
$\text{B.}$ $S_2 < S_1 < S_3$
$\text{C.}$ $S_3 < S_1 < S_2$
$\text{D.}$ $S_2 < S_3 < S_1$
设 $f(x, y)$ 连续,且 $f(x, y)=x y+\iint_D f(u, v) \mathrm{d} u \mathrm{~d} v$ ,其中 $D$ 是由 $y=0$, $y=x^2, x=1$ 所围成的区域,则 $f(x, y)$ 等于
$\text{A.}$ $x y$
$\text{B.}$ $2 x y$
$\text{C.}$ $x y+\frac{1}{8}$
$\text{D.}$ $x y+1$
设 $S: x^2+y^2+z^2=a^2(z \geq 0), S_1$ 为 $S$ 在第一卦限中的部分,则有
$\text{A.}$ $\iint_S x \mathrm{~d} S=4 \iint_{S_1} x \mathrm{~d} S$
$\text{B.}$ $\iint_S y \mathrm{~d} S=4 \iint_{S_1} y \mathrm{~d} S$
$\text{C.}$ $\iint_S z \mathrm{~d} S=4 \iint_{S_1} z \mathrm{~d} S$
$\text{D.}$ $\iint_S x y z \mathrm{~d} S=4 \iint_{S_1} x y z \mathrm{~d} S$
设函数 $f(u)$ 连续,区域 $D=\left\{(x, y) \mid x^2+y^2 \leq 2 y\right\}$, 则 $\iint_D f(x y) \mathrm{d} x \mathrm{~d} y$ 等于
$\text{A.}$ $\int_{-1}^1 \mathrm{~d} x \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x y) \mathrm{d} y$
$\text{B.}$ $2 \int_0^2 \mathrm{~d} y \int_0^{\sqrt{2 y-y^2}} f(x y) \mathrm{d} x$
$\text{C.}$ $\int_0^\pi \mathrm{d} \theta \int_0^{2 \sin \theta} f\left(r^2 \sin \theta \cos \theta\right) \mathrm{d} r$
$\text{D.}$ $\int_0^\pi \mathrm{d} \theta \int_0^{2 \sin \theta} f\left(r^2 \sin \theta \cos \theta\right) r \mathrm{~d} r$
填空题 (共 1 题 ),请把答案直接填写在答题纸上
由曲线 $y=x e^x$ 与直线 $y=e x$ 所围成的图形的面积 $S=$