考研数学
重点科目
其它科目

科数网

考10

数学

单选题 (共 6 题 ),每题只有一个选项正确
函数 $f(x)=\left\{\begin{array}{ll}1+x^2 & x \leq 0 \\ x-2 & x>0\end{array}\right.$ 是
$\text{A.}$ 在 $(-\infty,+\infty)$ 单调增加函数 $\text{B.}$ 在 $(-\infty,+\infty)$ 单调减少函数 $\text{C.}$ 在 $(-\infty, 0)$ 单增 $(0,+\infty)$ 单减函数 $\text{D.}$ 在 $(-\infty, 0)$ 单减 $(0,+\infty)$ 单增函数

如果一个二元函数 $f(x, y)$ 可以写为一个关于 $x$ 的函数 $g(x)$ 乘以一个关于 $y$ 的函数 $h(y)$, 也就是 $f(x, y)=g(x) h(y)$ 的形式, 我们把符合这样的情况的函数叫做 “二元函数 $f(x, y)$ 关于变量 $x, y$ 可分离”, 假定下列的函数中 $f(x, y)$ 具有二阶连续偏导数, 则下列说法中不正确的是 ( )
(1). 若 $f(x, y)=x y \mathrm{e}^{x+y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(2). 若 $f(x, y)=(x+y) \mathrm{e}^{x y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(3). 若 $f(x, y)>0$ 并且 $\frac{\partial^2(\ln f(x, y))}{\partial x \partial y}=0$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(4.) 若 $f(x, y)>0$ 并且满足 $\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y}=\frac{\partial^2 f}{\partial x \partial y} \cdot f(x, y)$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
$\text{A.}$ (2) $\text{B.}$ (1)(3)(4) $\text{C.}$ (2)(4) $\text{D.}$ (1)(3)

下列有关定义在 $(-\infty,+\infty)$ 上的可导函数 $f(x)$ 的说法正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow+\infty} f(x)=A$, 并且 $\exists x_0 \in(0,+\infty)$, 使得 $f\left(x_0\right)>A, \exists x_1 \in(0,+\infty)$ 并且 $x_0 \neq x_1$, 使得 $f\left(x_1\right) < A$, 那么 $f(x)$ 在 $(0,+\infty)$ 内有最大值和最小值。 $\text{B.}$ 若 $f(x)$ 是奇函数, 并且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=A(\neq 0)$, 则 $f(x)$ 的斜渐近线条数一定是偶数。 $\text{C.}$ 若 $f^{\prime}(x)=f(x)+\int_0^x f(t) \mathrm{d} t$ 并且 $f(0)=1$, 则 $f^{\prime \prime}(0)=2$ $\text{D.}$ 令 $g(x)=\left\{\begin{array}{l}\frac{f(x)-f\left(x_0\right)}{x-x_0}, x \neq x_0 \\ f^{\prime}\left(x_0\right), x=x_0\end{array}\right.$, 其中 $x_0 \in(-\infty,+\infty)$, 则 $g^{\prime}\left(x_0\right)$ 存在

设函数 $f(x)=\left\{\begin{array}{cc}g(x) \cos \frac{1}{x^2}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 且 $g(0)=g^{\prime}(0)=0$, 则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 连续但不可导. $\text{B.}$ 可导但 $f^{\prime}(0) \neq 0$. $\text{C.}$ 极限存在但不连续. $\text{D.}$ 可微且 $\left.\mathrm{d} f(x)\right|_{x=0}=0$.

设 $f(x)$ 在 $x=0$ 的邻域内二阶连续可导, 且 $f^{\prime}(0)=0, \lim _{x \rightarrow 0} \frac{f^{\prime}(x)+2 f^{\prime \prime}(x)}{x-x^2}=4$, 则下列结论正确的是
$\text{A.}$ $x=0$ 为 $f(x)$ 的极小值点 $\text{B.}$ $x=0$ 为 $f(x)$ 的极大值点 $\text{C.}$ $(0, f(0))$ 为 $y=f(x)$ 的拐点 $\text{D.}$ $x=0$ 既不是 $f(x)$ 的极值点, 也不是 $f(x)$ 的拐点

设连续函数 $g(x)$ 在 $x=0$ 点可导, 且 $g(0)=0, g^{\prime}(0)=12$, 若
$$
f(x)= \begin{cases}\frac{1}{x^4} \int_{\sin x}^x g(t) \mathrm{d} t, & x \neq 0, \\ g(0), & x=0,\end{cases}
$$
则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 不连续, $x=0$ 是其第二类间断点. $\text{B.}$ 不连续, $x=0$ 是其可去间断点. $\text{C.}$ 连续,但不可导. $\text{D.}$ 可导, 且 $f^{\prime}(0)=g^{\prime}(0)$.

试卷二维码

分享此二维码到群,让更多朋友参与