考研数学
重点科目
其它科目

科数网

卷9

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)$ 满足 $f^{\prime}(0)=0, f^{\prime}(x)+[f(x)]^3=x^2$, 则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值. $\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值. $\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点. $\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.

点 $P(1,0,1)$ 到直线 $\left\{\begin{array}{l}x-y-z+1=0, \\ x+y-3 z=0\end{array}\right.$ 的距离 $d=$ (  )
$\text{A.}$ $\frac{\sqrt{2}}{3}$. $\text{B.}$ $\frac{\sqrt{3}}{2}$. $\text{C.}$ $\sqrt{2}$. $\text{D.}$ $\sqrt{3}$.

设函数 $f(x, y)$ 连续, $f(0,0)=0$, 又设 $F(x, y)=|x-y| f(x, y)$, 则 $F(x, y)$ 在点 $(0,0)$处
$\text{A.}$ 连续; 但不可微. $\text{B.}$ 连续, 但偏导数不存在. $\text{C.}$ 偏导数存在, 但不可微. $\text{D.}$ 可微.

若 $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-x^3-2 y^3}{1-\cos \sqrt{x^2+y^2}}=2$, 则下列结论不正确的是
$\text{A.}$ $f(x, y)$ 在 $(0,0)$ 点连续. $\text{B.}$ $f_x^{\prime}(0,0)=f_y^{\prime}(0,0)=0$. $\text{C.}$ $f(x, y)$ 在 $(0,0)$ 处可微. $\text{D.}$ $f(x, y)$ 在点 $(0,0)$ 处取极大值.

函数 $y=\frac{(x+1)^2}{x}$ 的图形有 $n$ 条渐近线, 则 $n=$ (  )
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设函数 $y=y(x)$ 由方程 $\ln \left(x^2+y^2\right)=\arctan \frac{y}{x}$ 确定, 且满足 $y(1)=0$, 则 $y^{\prime \prime}(1)=$ (  )
$\text{A.}$ 0 $\text{B.}$ $\frac{1}{2}$. $\text{C.}$ 10 $\text{D.}$ 20

试卷二维码

分享此二维码到群,让更多朋友参与