考研数学
重点科目
其它科目

科数网

ks3

数学

单选题 (共 6 题 ),每题只有一个选项正确
设矩阵 $\boldsymbol{A}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2\end{array}\right)$, 其中 $a, b, c, d$ 互不相同, $M_i(i=1,2,3,4)$ 为 $\boldsymbol{A}$ 划掉第 $i$ 列后所得 3 阶矩阵的行列式, $\boldsymbol{b}=\left(1, a, a^2\right)^{\mathrm{T}}$. 若 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$ 是 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 的两个不同的解,则
$\text{A.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1-\boldsymbol{\xi}_2=k\left(M_1, M_2, M_3, M_4\right)^{\mathrm{T}}$. $\text{B.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1-\boldsymbol{\xi}_2=k\left(-\boldsymbol{M}_1, \boldsymbol{M}_2,-\boldsymbol{M}_3, \boldsymbol{M}_4\right)^{\mathrm{T}}$. $\text{C.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1+\boldsymbol{\xi}_2=k\left(-M_1,-M_2, M_3, M_4\right)^{\mathrm{T}}+(2,0,0,0)^{\mathrm{T}}$. $\text{D.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1+\boldsymbol{\xi}_2=k\left(-M_1, M_2,-M_3, M_4\right)^{\mathrm{T}}+(1,0,0,0)^{\mathrm{T}}$.

设 $\eta_1, \eta_2$ 是 3 元非齐次线性方程组 $A x=b$ 的两个不同解, 且 $r(A)=2$, 则方程组 $A x=b$ 的通解为
$\text{A.}$ $\eta_1+k \eta_2(k \in R)$ $\text{B.}$ $\eta_1+k\left(\eta_1-\eta_2\right)(k \in R)$ $\text{C.}$ $k\left(\eta_1-\eta_2\right)(k \in R)$ $\text{D.}$ $\eta_1+k\left(\eta_1+\eta_2\right)(k \in R)$

设 $A$ 为 $m \times n$ 矩阵, 则非齐次线性方程组 $A x=b$ 有解的充分必要条件为
$\text{A.}$ $R(A) < m$ $\text{B.}$ $R(A) < n$ $\text{C.}$ $R(A, b)=R(A)$ $\text{D.}$ $|A| \neq 0$

设 4 阶矩阵 $A$ 的秩为 $3, \eta_1, \eta_2$ 为非齐次线性方程 $A x=b$ 的两个不同的解, $c$ 为任意常数,则该方程组 $A x=b$ 的通解为
$\text{A.}$ $\eta_1+c \frac{\eta_1-\eta_2}{2}$ $\text{B.}$ $\frac{\eta_1-\eta_2}{2}+c \eta_1$ $\text{C.}$ $\eta_1+c \frac{\eta_1+\eta_2}{2}$ $\text{D.}$ $\frac{\eta_1+\eta_2}{2}+c \eta_1$

设 $P_i\left(x_i, y_i, z_i\right)(i=1,2, \cdots, n ; n>3)$ 是不重合的点, $\boldsymbol{A}=\left[\begin{array}{cccc}x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \\ z_1 & z_2 & \cdots & z_n \\ 1 & 1 & \cdots & 1\end{array}\right]$, 若 $P_1$ $P_2, \cdots, P_n$ 共面, 则 $r(\boldsymbol{A})$
$\text{A.}$ 必为 2 . $\text{B.}$ 为 1 或 2 . $\text{C.}$ 为 2 或 3 . $\text{D.}$ 必为 3 .

若矩阵 $\boldsymbol{A}$ 可经初等行变换化为 $\boldsymbol{B}$, 则
$\text{A.}$ 方程组 $\boldsymbol{A x}=\mathbf{0}$ 与 $\boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$ 同解. $\text{B.}$ 方程组 $B x=0$ 与 $A A^{\mathrm{r}} x=0$ 同解. $\text{C.}$ 方程组 $A^{\mathrm{T}} A x=0$ 与 $\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B x}=\mathbf{0}$ 同解. $\text{D.}$ 方程组 $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$ 与 $\boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$ 同解.

试卷二维码

分享此二维码到群,让更多朋友参与