单选题 (共 2 题 ),每题只有一个选项正确
设 $A$ 为 $n$ 阶实矩阵, $A^T$ 是 $A$ 的转置矩阵,则对于线性方程组 $(I): A x=0$ 和 $(I I): x^T A x=0$ ,必有
$\text{A.}$ $(I I)$ 的解都是 $(I)$ 的解, $(I)$ 的解也是 $(I I)$
$\text{B.}$ $(I I)$ 的解都是 $(I)$ 的解,但 $(I)$ 解不是 $(I I)$ 的解
$\text{C.}$ $(I)$ 解不是 $(I I)$ 的解, $(I I)$ 的解也不是 $(I)$ 的解
$\text{D.}$ $(I)$ 解是 $(I I)$ 的解,但 $(I I)$ 的解不是 $(I)$ 的解
设 $A$ 是 3 阶方阵,将 $A$ 的第 1 列与第 2 列交换得 $B$ ,再把 $B$ 的第 2 列加到第 3 列得 $C$ ,则满足 $A Q=C$ 的可逆矩阵 $Q$ 为
$\text{A.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$
$\text{B.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$
$\text{C.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$
$\text{D.}$ $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
填空题 (共 4 题 ),请把答案直接填写在答题纸上
设线性空间 $V$ 上的线性变换 $\sigma$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 $\left(\begin{array}{ccc}1 & 2 & 0 \\ 3 & 0 & -1 \\ 0 & 3 & 2\end{array}\right)$, 则 $\sigma$ 在基 $\varepsilon_1+\varepsilon_2+\varepsilon_3$, $\varepsilon_2+\varepsilon_3, \varepsilon_3$ 下的矩阵为
设矩阵 $A$ 的初等因子组为 $\lambda^2,(\lambda-1)^2,(\lambda-1)^2, \lambda+1,(\lambda+1)^3$, 则 $A$ 的最小多项式为
已知矩阵 $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right) , B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$, 且矩阵 $X$满足 $A X A+B X B=A X B+B X A+E$ ,其中 $E$ 是 3 阶单位阵,求 $\boldsymbol{X}$.
设 $n$ 维向量 $\alpha=(a, 0, \cdots, 0, a)^T, a < 0 ; E$ 为 $\boldsymbol{n}$ 阶单位矩阵,矩阵 $A=E-\alpha \alpha^T, B=E+\frac{1}{a} \alpha \alpha^T$ ,其中 $A$的逆矩阵为 $B$ ,则 $a=$