单选题 (共 2 题 ),每题只有一个选项正确
直线 $L: \frac{x}{3}=\frac{y}{-2}=\frac{z}{7}$ 和平面 $\pi: 3 x-2 y+7 z-8=0$ 的位置关系是
$\text{A.}$ 直线 $L$ 平行于平面 $\pi$
$\text{B.}$ 直线 $L$ 在平面 $\pi$ 上
$\text{C.}$ 直线 $L$ 垂直于平面 $\pi$
$\text{D.}$ 直线 $L$ 与平面 $\pi$ 斜交
已知曲面 $z=4-x^2-y^2$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$
$\text{B.}$ $(-1,1,2)$
$\text{C.}$ $(1,1,2)$
$\text{D.}$ $(-1,-1,2)$
填空题 (共 4 题 ),请把答案直接填写在答题纸上
设向量 $a=(2,1,2), \vec{b}=(4,-1,10), \vec{c}=\vec{b}-\lambda \hat{1}$, 且 $\vec{a} \perp \mathbf{1} \dot{c}$, 则 $\lambda=$
设矢量 $a, b$ 满足 $|a+b|=|a-b|$, 若 $a=(1,2,3), b=(1,4, \lambda)$, 则 $\lambda=$ ?
与向量 $\vec{a}=(1, \sqrt{2},-1)$ 平行的单位向量是
设向量 $\vec{a}=(3,-1,-2), \vec{b}=(1,2,-1)$, 则 $2 \vec{a} \times 3 \vec{b}=$