考研数学
重点科目
其它科目

科数网

第十二节  无穷级数

数学

单选题 (共 6 题 ),每题只有一个选项正确
若幂级数 $\sum_{n=1}^{\infty} a_n(x+2)^n$ 在 $x=-5$ 处收敛,则其在 $x=0$ 处是
$\text{A.}$ 发散 $\text{B.}$ 条件收敛 $\text{C.}$ 绝对收敛 $\text{D.}$ 收敛性不能确定

下列数项级数哪个发散?
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ $\text{B.}$ $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$ $\text{C.}$ $\sum_{n=1}^{\infty} \ln \frac{n^2+1}{n^2}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{3^n n !}{n^n}$

设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数绝对收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{u_n}{n}$ $\text{B.}$ $\sum_{n=1}^{\infty} \frac{u_n^2}{n}$ $\text{C.}$ $\sum_{n=1}^{\infty}\left(u_{n+1}-u_n\right)$ $\text{D.}$ $\sum_{n=1}^{\infty}\left(u_n\right)^n$

设函数 $f(x)=\left\{\begin{array}{cc}x, & 0 \leqslant x \leqslant 1, \\ -x, & 1 < x \leqslant 2,\end{array}\right.$ 的正弦级数与余弦级数的和函数分别为 $S_1(x)$ 与 $S_2(x)$ $(-\infty < x < +\infty)$, 则 $S_1(6)+S_2(-3)=$
$\text{A.}$ -2 $\text{B.}$ 0 $\text{C.}$ 1 $\text{D.}$ 2

设 $p$ 为常数, 若级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \arctan \frac{1}{\sqrt{n}}$ 条件收剑, 则 $p$ 的取值范围是
$\text{A.}$ $\left(0, \frac{1}{2}\right]$. $\text{B.}$ $\left(-\frac{1}{2}, \frac{1}{2}\right]$. $\text{C.}$ $(0,1)$. $\text{D.}$ $\left(-\frac{1}{2}, 1\right)$.

设幂级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 $x=3$ 处条件收敛,则级数 $\sum_{n=1}^{\infty} \frac{a_n}{2^n}(x+1)^n$ 在 $x=-3$ 处
$\text{A.}$ 绝对收敛 $\text{B.}$ 条件收敛 $\text{C.}$ 发散 $\text{D.}$ 敛散性不确定

试卷二维码

分享此二维码到群,让更多朋友参与