考研数学
重点科目
其它科目

科数网

第一讲:函数极限

单选题 (共 6 题 ),每题只有一个选项正确
当 $x \rightarrow+\infty$ 时, $f(x)=\left(x^3-x^2+\frac{1}{2} x\right) \mathrm{e}^{\frac{1}{x}}-\sqrt{x^6+1}-\frac{1}{6}$ 是 $g(x)=\alpha x^\beta$ 等价无穷小, 则 $\alpha, \beta=$
$\text{A.}$ $\alpha=\frac{1}{2}, \beta=-1$ $\text{B.}$ $\alpha=\frac{1}{8}, \beta=-1$ $\text{C.}$ $\alpha=\frac{1}{8}, \beta=-2$ $\text{D.}$ $\alpha=\frac{1}{2}, \beta=-2$

已知当 $x \rightarrow 0$ 时, $\left(\mathrm{e}^{\sin ^2 x}-1\right) \ln \left(1+\sin ^2 x\right)$ 是比 $x \sin ^n x$ 高阶的无穷小量, 而 $x \tan x^n$ 是比 $\sqrt{1+\tan x^2}-1$ 高阶的无穷小量, 则正整数 $n=$
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

设 $\alpha_1=\sqrt{x+\sqrt{x}}, \alpha_2=\sqrt[3]{x} \tan (x+\sqrt{x}), \alpha_3=1-\cos \sqrt{x}$. 当 $x \rightarrow 0^{+}$时, 以上 3 个无穷小量按照从低阶到高阶的排序是
$\text{A.}$ $\alpha_1, \alpha_2, \alpha_3$. $\text{B.}$ $\alpha_1, \alpha_3, \alpha_2$. $\text{C.}$ $\alpha_2, \alpha_1, \alpha_3$. $\text{D.}$ $\alpha_3, \alpha_1, \alpha_2$.

$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是 ( )
(1). 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
(2). $\ln \left(-x+\sqrt{1+x^2}\right)$
(3). $\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
(4). $\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ (1)(4)(2)(3) $\text{B.}$ (2)(4)(1)(3) $\text{C.}$ (1)(4)(3)(2) $\text{D.}$ (4)(2)(1)(3)

设 $\int_0^{\tan x}\left(\mathrm{e}^{a t^2}-1\right) \mathrm{d} t \sim 2 x^3+b x(x \rightarrow 0)$, 则
$\text{A.}$ $a=6, b=0$ $\text{B.}$ $a=0, b=6$ $\text{C.}$ $a=-6, b=0$ $\text{D.}$ $a=0, b=-6$

设连续函数 $f(x, y)$ 满足 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x-2 y-4}{x^2+y^2}=-1$, 则 $\lim _{h \rightarrow 0} \frac{f(2 h, 0)-f(0,-h)}{h}=$
$\text{A.}$ 2 $\text{B.}$ 3 $\text{C.}$ 4 $\text{D.}$ -4

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与