单选题 (共 4 题 ),每题只有一个选项正确
设在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$, 则 $f^{\prime}(0), f^{\prime}(1), f(1)-f(0)$ 或 $f(0)-f(1)$ 几个数的大小顺序为 )
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$
$\text{B.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$
$\text{C.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$
$\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$
已知函数 $f(x)$ 具有任意阶导数, 且 $f^{\prime}(x)=[f(x)]^2$, 则当 $n \geq 2$ 时, $f^{(n)}(x)$ 等于 ( )
$\text{A.}$ $n![f(x)]^{n+1}$
$\text{B.}$ $[f(x)]^{n+1}$
$\text{C.}$ $[f(x)]^{2 n}$
$\text{D.}$ $n![f(x)]^{2 n}$
设函数 $f(x)$ 在 $x=0$ 的某个邻域内具有连续二阶导数, 且 $\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{e^x-1}=1$,则 $f(x)$ 在 $x=0$ 处 ( ).
$\text{A.}$ 有极值;
$\text{B.}$ 无极值;
$\text{C.}$ 无拐点;
$\text{D.}$ 有拐点.
设函数 $f(x)=x^4+\left|x^3\right|$, 则使 $f^{(n)}(0)$ 存在的最高阶数 $n=(\quad)$.
$\text{A.}$ 1 ;
$\text{B.}$ 2 ;
$\text{C.}$ 3 ;
$\text{D.}$ 4.
填空题 (共 2 题 ),请把答案直接填写在答题纸上
设函数 $f(x)$ 可导, 且 $y=f\left(\sin ^2 x\right)+f\left(\cos ^2 x\right)$, 则 $\frac{d y}{d x}=$
设 $f(x)=x \sin x$, 则 $f^{(6)}(0)=$