单选题 (共 6 题 ),每题只有一个选项正确
当 $x \rightarrow x_0$ 时, $\alpha(x), \beta(x)$ 都是无穷小, 则当 $x \rightarrow x_0$ 时 ( ) 不一定是无穷小。
$\text{A.}$ $|\alpha(x)|+|\beta(x)|$
$\text{B.}$ $\alpha^2(x)+\beta^2(x)$
$\text{C.}$ $\ln [1+\alpha(x) \cdot \beta(x)]$
$\text{D.}$ $\frac{\alpha^2(x)}{\beta(x)}$
若 $f(x)=\left\{\begin{array}{ll}\mathrm{e}^{\frac{1}{x^2-1}}, & |x| < 1, \\ x^4-b x^2+c, & |x| \geqslant 1\end{array}\right.$ 是可微函数, 则 $b+c=$
$\text{A.}$ 2
$\text{B.}$ 3
$\text{C.}$ 4
$\text{D.}$ 5
设 $f(x)$ 为微分方程 $y^{\prime \prime}-y^{\prime}- e ^{\sin x}=0$ 的解, 且 $f^{\prime}\left(x_0\right)=0$, 则 $f(x)$ 在 $(\quad)$.
$\text{A.}$ $x_0$ 的某邻域内单调递减
$\text{B.}$ $x_0$ 处取极小值
$\text{C.}$ $x_0$ 处取极大值
$\text{D.}$ $x_0$ 的某邻域内单调递增
设有下列命题:
(1)若 $\sum_{n=1}^{\infty}\left(u_{2 n-1}+u_{2 n}\right)$ 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 收敛。
(2)若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} u_{n+1000}$ 收敛.
(3) 若 $\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_n}>1$ ,则 $\sum_{n=1}^{\infty} u_n$ 发散。
(4)若 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 收敛, 则 $\sum_{n=1}^{\infty} u_n, \sum_{n=1}^{\infty} v_n$ 都收敛.则以下命题中正确的是
$\text{A.}$ (1) (2)
$\text{B.}$ (2) (3)
$\text{C.}$ (3) (4)
$\text{D.}$ (1) (4)
设 $f(x)=\left|\begin{array}{cccc}2 x & x & 1 & 0 \\ 1 & x & 2 & 3 \\ 2 & 3 & x & 2 \\ 1 & 1 & 2 & 2 x\end{array}\right|$ 中, 则 $x^3$ 的系数是
$\text{A.}$ -2
$\text{B.}$ 2
$\text{C.}$ 4
$\text{D.}$ -4
任意两个 $n$ 维向量组 $\alpha_1, \cdots \alpha_m$ 和 $\beta_1, \cdots, \beta_m$, 若存在两组不全为 0 的数 $\lambda_1, \cdots, \lambda_m$和 $k_1, \cdots, k_m$, 使得 $\left(\lambda_1+k_1\right) \alpha_1+\cdots+\left(\lambda_m+k_m\right) \alpha_m+\left(\lambda_1-k_1\right) \beta_1+\cdots+\left(\lambda_m-k_m\right) \beta_m= 0$,则
$\text{A.}$ $\alpha_1, \cdots \alpha_m$ 和 $\beta_1, \cdots, \beta_m$ 都线性相关.
$\text{B.}$ $\alpha_1, \cdots \alpha_m$ 和 $\beta_1, \cdots, \beta_m$ 都线性无关.
$\text{C.}$ $\alpha_1+\beta_1, \cdots, \alpha_m+\beta_m, \alpha_1-\beta_1, \cdots, \alpha_m-\beta_m$ 线性无关.
$\text{D.}$ $\alpha_1+\beta_1, \cdots, \alpha_m+\beta_m, \alpha_1-\beta_1, \cdots, \alpha_m-\beta_m$ 线性相关.