考研数学
重点科目
其它科目

科数网

2

数学

单选题 (共 5 题 ),每题只有一个选项正确
设 $f(x)$ 在 $x=a$ 处可导, 则 $\lim _{x \rightarrow 0} \frac{f(a+x)-f(a-x)}{x}$ 等于
$\text{A.}$ $f^{\prime}(a)$. $\text{B.}$ $2 f^{\prime}(a)$. $\text{C.}$ 0 . $\text{D.}$ $f^{\prime}(2 a)$.

设 $f(x)=\cos x(x+|\sin x|)$, 则在 $x=0$ 处有 $($ ).
$\text{A.}$ $f^{\prime}(0)=2$ $\text{B.}$ $f^{\prime}(0)=1$ $\text{C.}$ $f^{\prime}(0)=0$ $\text{D.}$ $f(x)$ 不可导.

下列命题中正确的是()
$\text{A.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不可导, 则 $f(x)$ 在 $x=x_0$ 处不连续. $\text{B.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不连续, 则 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 中至少有一个不存在. $\text{C.}$ 若 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 存在, 则函数 $f(x)$ 在 $x=x_0$ 处可导. $\text{D.}$ 若函数 $f(x)$ 在 $x=x_0$ 处连续, 则 $f(x)$ 在 $x=x_0$ 处左可导并且右可导.

设 $f(x)$ 在点 $x=a$ 的某个邻域内有定义,则 $f(x)$ 在 $x=a$ 处可导的一个充分条件是()
$\text{A.}$ $\lim _{h \rightarrow+\infty} h\left[f\left(a+\frac{1}{h}\right)-f(a)\right]$ 存在. $\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a+h)}{h}$ 存在. $\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}$ 存在. $\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$ 存在.

设 $f(x)=\left\{\begin{array}{cc}\frac{1-\cos x}{\sqrt{x}}, & x>0, \\ x^2 g(x), & x \leqslant 0,\end{array}\right.$ 其中 $g(x)$ 是有界函数, 则 $f(x)$ 在 $x=0$ 处
$\text{A.}$ 极限不存在。 $\text{B.}$ 极限存在, 但不连续. $\text{C.}$ 连续, 但不可导. $\text{D.}$ 可导。

填空题 (共 1 题 ),请把答案直接填写在答题纸上
求曲线 $y-x+e^y=0$ 在点 $x=1$ 处的切线方程

试卷二维码

分享此二维码到群,让更多朋友参与