单选题 (共 3 题 ),每题只有一个选项正确
函数 $f(x)$ 在 $[a, b]$ 上可积,那么
$\text{A.}$ $f(x)$ 在 $[a, b]$ 上有界
$\text{B.}$ $f(x)$ 在 $[a, b]$ 上连续
$\text{C.}$ $f(x)$ 在 $[a, b]$ 上单调
$\text{D.}$ $ f(x)$ 在 $[a, b]$ 上只有一个间断点
在下列微分方程中,以 $y=C_1 e ^x+C_2 \cos 2 x+C_3 \sin 2 x, \quad\left(C_1, C_2, C_3\right.$ 为任意常数 $)$ 为通解的是
$\text{A.}$ $y^{\prime \prime \prime}+y^{\prime \prime}-4 y^{\prime}-4 y=0$
$\text{B.}$ $y^{\prime \prime \prime}+y^{\prime \prime}+4 y^{\prime}+4 y=0$
$\text{C.}$ $y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=0$
$\text{D.}$ $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0 \text {. }$
设 $f(x)=\left\{\begin{array}{ll}x+1, & 0 \leqslant x \leqslant \pi, \\ 0, & -\pi \leqslant x < 0,\end{array} S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n \dot{x}\right)\right.$ 是 $f(x)$ 以 $2 \pi$ 为周期的傅里叶级数, 则 $\sum_{n=1}^{\infty} a_n=$
$\text{A.}$ $-\frac{\pi}{4}$.
$\text{B.}$ $\frac{\pi}{4}$.
$\text{C.}$ $-\frac{\pi}{2}$.
$\text{D.}$ $\frac{\pi}{2}$.
填空题 (共 3 题 ),请把答案直接填写在答题纸上
二阶常系数非齐次线性微分方程 $y^{\prime \prime}-4 y^{\prime}+3 y=2 e^{2 x}$的通解为 $y=$
微分方程 $y^{\prime}+y=e^{-x} \cos x$ 满足条件 $y(0)=0$ 的解为 $y=$
微分方程 $y \mathrm{~d} x+\left(x-3 y^2\right) \mathrm{d} y=0$ 满足条件 $\left.y\right|_{x=1}=1$的解为 $y=$