后保研高等数学一元函数积分试卷

数学

本试卷总分100分,考试时间90分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f^{\prime}(x)$ 连续, 则 $\int f^{\prime}(2 x) d x=(\quad)$.
$\text{A.}$ $f(2 x)+c$; $\text{B.}$ $2 f(x)+c$; $\text{C.}$ $\frac{1}{2} f(2 x)+c$; $\text{D.}$ $x f(2 x)+c$.

设反常积分 $\int_1^{+\infty} x^{-k} d x$ 收敛,则
$\text{A.}$ $k>1$; $\text{B.}$ $k \geqslant 1$; $\text{C.}$ $k \leqslant 1$; $\text{D.}$ $k < 1$.

若 $f(x)=\lim _{n \rightarrow \infty} \int_0^1 \frac{n t^{n-1}}{1+ e ^{x t}} d t$, 则 $\int_0^{+\infty} f(x) d x=$
$\text{A.}$ $e ^2$. $\text{B.}$ $1+ e$. $\text{C.}$ $\ln (1+ e )$. $\text{D.}$ $\ln 2$.

设有积分 $I_1=\int_0^1 \frac{x}{\ln (1+x)} d x, I_2=\int_0^1 \frac{x^2}{\ln ^2(1+x)} d x, I_3=\int_0^1 \frac{x^2}{\ln \left(1+x^2\right)} d x$, 则 $I_1, I_2, I_3$按大小不同排列的顺序是
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_1 < I_3 < I_2$ $\text{C.}$ $I_3 < I_2 < I_1$ $\text{D.}$ $I_3 < I_1 < I_2$

设 $f(x)$ 在闭区间 $[a, b]$ 上连续,则在开区间 $(a, b)$ 内 $f(x)$ 必有 $(\quad)$
$\text{A.}$ 导函数 $\text{B.}$ 原函数 $\text{C.}$ 最大值或最小值 $\text{D.}$ 极值

下列说法不正确的是()。
$\text{A.}$ 一切初等函数在其定义区间上都存在有原函数 $\text{B.}$ 不连续的函数也可能存在有原函数 $\text{C.}$ 连续的奇函数的原函数都是偶函数 $\text{D.}$ 连续的偶函数的原函数都是奇函数

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。