2024—2025学年度下学期期末考试

高等数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
下列曲面方程中,表示柱面的是
$\text{A.}$ $x^2-2 y^2=1$ $\text{B.}$ $x^2+y^2=z$ $\text{C.}$ $x^2-2 y^2=z^2$ $\text{D.}$ $x^2-y^2=z$ .

设 $y_1= e ^{-x}, y_2=2 x e ^{-x}, y_3=3 e ^x$ 是三阶常系数线性齐次方程的解,则该方程为

$\text{A.}$ $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=0$ $\text{B.}$ $y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0$ $\text{C.}$ $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$ $\text{D.}$ $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$

若函数 $z=f(u)$ 二阶可导, 且 $u =3 e^y+2 x$, 则 $\frac{\partial^2 z}{\partial x \partial y}=$

$\text{A.}$ $6 x f''$ $\text{B.}$ $6 e^y f^{''}$ $\text{C.}$ $3 e^y f^{''}$ $\text{D.}$ $2 f''$

已知曲线 L 的参数方程 $\left\{\begin{array}{l}x=2 \cos ^3 t, \\ y=2 \sin ^3 t\end{array}\left(0 \leq t \leq \frac{\pi}{2}\right)\right.$, 则 L 的长度为
$\text{A.}$ 2 . $\text{B.}$ 3. $\text{C.}$ 5. $\text{D.}$ 6 . $\text{E.}$ 9

设 $f_1(x, y)=\left\{\begin{array}{ll}\frac{y^2-x y}{\sqrt{x}-\sqrt{y}}, & x \neq y, \\ 0, & x=y,\end{array} f_2(x, y)=\left\{\begin{array}{ll}\frac{x^2 y}{x^4+y^2}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.\right.$ 则

$\text{A.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均连续. $\text{B.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均不连续. $\text{C.}$ $f_1(x, y)$ 在点 $(0,0)$ 处连续,$f_2(x, y)$ 在点 $(0,0)$ 处不连续. $\text{D.}$ $f_1(x, y)$ 在点 $(0,0)$ 处不连续,$f_2(x, y)$ 在点 $(0,0)$ 处连续.

设有直线 $L:\left\{\begin{array}{l}x+3 y+2 z+1=0 \\ 2 x-y-10 z+3=0\end{array}\right.$ 及平面 $\Pi: 4 x-2 y+z-2=0$ ,则直线 $L$()
$\text{A.}$ 平行于平面 $\text{B.}$ 在平面上 $\text{C.}$ 垂直于平面 $\text{D.}$ 与平面斜交

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。