查看原题
设 $f(x, y)=\left\{\begin{array}{ll}y \arctan \frac{1}{\sqrt{x^2+y^2}},(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$ 讨论 $f(x, y)$在原点 $(0,0)$ 处的可微性.
                        
不再提醒