单选题 (共 1 题 ),每题只有一个选项正确
设 $f(x, y)$ 具有一阶连续偏导数, 若 $f\left(x, x^2\right)=x^3, f_x\left(x, x^2\right)=x^2-2 x^4$, 则 $f_y\left(x, x^2\right)=$
$\text{A.}$ $x+x^3$
$\text{B.}$ $2 x^2+2 x^4 $
$\text{C.}$ $x^2+x^5$
$\text{D.}$ $2 x+2 x^2$
填空题 (共 5 题 ),请把答案直接填写在答题纸上
设 $z=z(x, y)$ 由方程组 $\left\{\begin{array}{l}x=(t+1) \cos z, \\ y=t \sin z\end{array}\right.$ 确定, $t=t(x, y)$, 则 $\frac{\partial z}{\partial x}=$
设二元函数 $z=z(x, y)$ 有二阶连续偏导数, 且满足
$$
6 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial x \partial y}-\frac{\partial^2 z}{\partial y^2}=1,
$$
令变量 $\left\{\begin{array}{l}u=x-2 y \\ v=x+3 y\end{array}\right.$, 那么 $\frac{\partial^2 z}{\partial u \partial v}=$
设 $z=\frac{1}{x} f\left(x^2 y\right)+x y g(x+y)$ ,其中 $f, g$ 具有二阶连续导数, 计算 $\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}$.
已知函数 $u(x, y)$ 的全微分为 $2 x y \mathrm{~d} x+x^2 \mathrm{~d} y$, 则 $u(x, y)=$
(求出满足条件的任何一个函数均可)
设 $z=\sqrt{\ln (x y)}$, 则 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=$