考研数学
重点科目
其它科目

科数网

试卷1

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $\left\{u_n\right\}$ 是数列,则下列命题正确的是
$\text{A.}$ 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty}\left(u_{2 n-1}+u_{2 n}\right)$ 收敛 $\text{B.}$ 若 $\sum_{n=1}^{\infty}\left(u_{2 n-1}+u_{2 n}\right)$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛 $\text{C.}$ 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty}\left(u_{2 n-1}-u_{2 n}\right)$ 收敛 $\text{D.}$ 若 $\sum_{n=1}^{\infty}\left(u_{2 n-1}-u_{2 n}\right)$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

设 $a_n>0(n=1,2,3 \cdots)$ ,$S_n=a_1+a_2+a_3+\ldots+a_n,$ 则数列 $\left\{S_n\right\}$ 有界是数列 $\left\{a_n\right\}$ 收敛的
$\text{A.}$ 充分必要条件 $\text{B.}$ 充分非必要条件 $\text{C.}$ 必要非充分条件 $\text{D.}$ 非充分也非必要条件

已知级数 $\sum_{n=1}^{\infty}(-1)^n \sqrt{n} \sin \frac{1}{n^\alpha}$ 绝对收敛,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$条件收敛,则
$\text{A.}$ $0 < \alpha \leq \frac{1}{2}$ $\text{B.}$ $\frac{1}{2} < \alpha \leq 1$ $\text{C.}$ $1 < \alpha \leq \frac{3}{2}$ $\text{D.}$ $\frac{3}{2} < \alpha < 2$

设 $f(x)=\left|x-\frac{1}{2}\right|, b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x$ , $(n=1,2, \cdots)$ ,令 $S(x)=\sum_{n=1}^{\infty} b_n \sin n \pi x$ ,则 $S\left(-\frac{9}{4}\right)=(\quad)$
$\text{A.}$ $\frac{3}{4}$ $\text{B.}$ $\frac{1}{4}$ $\text{C.}$ $-\frac{1}{4}$ $\text{D.}$ $-\frac{3}{4}$

设 $\left\{a_n\right\}$ 为正项数列,下列选项正确的是
$\text{A.}$ 若 $a_n>a_{n+1}$, 则 $\sum_{n=1}^{\infty}(-1)^{n-1} a_n$ 收敛 $\text{B.}$ 若 $\sum_{n=1}^{\infty}(-1)^{n-1} a_n$ 收敛,则 $a_n>a_{n+1}$ $\text{C.}$ 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则存在常数 $p>1$ ,使 $\lim _{n \rightarrow \infty} n^p a_n$ 存在 $\text{D.}$ 若存在常数 $p>1$ ,使 $\lim _{n \rightarrow \infty} n^p a_n$ 存在,则 $\sum_{n=1}^{\infty} a_n$ 收敛

若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x=\sqrt{3}$ 与 $x=3$ 依次为幂级数 $\sum_{n=1}^{\infty} n a_n(x-1)^n$ 的
$\text{A.}$ 收敛点,收敛点 $\text{B.}$ 收敛点,发散点 $\text{C.}$ 发散点, 收敛点 $\text{D.}$ 发散点,发散点

试卷二维码

分享此二维码到群,让更多朋友参与