考研数学
重点科目
其它科目

科数网

试卷02

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $A$ 为 3 阶矩阵, $P$ 为 3 阶可逆矩阵,且
$$
P^{-1} A P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right),
$$

若 $P=\left(\alpha_1, \alpha_2, \alpha_3\right) , Q=\left(\alpha_1+\alpha_2, \alpha_2, \alpha_3\right)$ ,则 $Q^{-1} A Q=$
$\text{A.}$ $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$

设随机变量 $X$ 与 $Y$ 相互独立,且都服从区间 $(0,1)$ 上的均匀分布,则 $P\left\{x^2+y^2 \leq 1\right\}=$
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{1}{2}$ $\text{C.}$ $\frac{\pi}{8}$ $\text{D.}$ $\frac{\pi}{4}$

设 $X_1, X_2, X_3$ 是随机变量,且
$$
\begin{gathered}
X_1 \sim N(0,1), X_2 \sim N\left(0,2^2\right), X_3 \sim N\left(5,3^2\right), \\
p_i=P\left\{-2 \leq X_i \leq 2\right\}(i=1,2,3),
\end{gathered}
$$

$\text{A.}$ $p_1>p_2>p_3$ $\text{B.}$ $p_2>p_1>p_3$ $\text{C.}$ $p_3>p_1>p_2$ $\text{D.}$ $p_1>p_3>p_2$

设 $X_1, X_2, X_3$ 是随机变量,且
$$
\begin{gathered}
X_1 \sim N(0,1), X_2 \sim N\left(0,2^2\right), X_3 \sim N\left(5,3^2\right), \\
p_i=P\left\{-2 \leq X_i \leq 2\right\}(i=1,2,3),
\end{gathered}
$$

$\text{A.}$ $p_1>p_2>p_3$ $\text{B.}$ $p_2>p_1>p_3$ $\text{C.}$ $p_3>p_1>p_2$ $\text{D.}$ $p_1>p_3>p_2$

设事件 $A$ 与 $B$ 相互独立, $P(B)=0.5$ , $P(A-B)=0.3$ ,则 $P(B-A)=$
$\text{A.}$ 0.1 $\text{B.}$ 0.2 $\text{C.}$ 0.3 $\text{D.}$ 0.4

设事件 $A$ 与 $B$ 相互独立, $P(B)=0.5$ , $P(A-B)=0.3$ ,则 $P(B-A)=$
$\text{A.}$ 0.1 $\text{B.}$ 0.2 $\text{C.}$ 0.3 $\text{D.}$ 0.4

试卷二维码

分享此二维码到群,让更多朋友参与