考研数学
重点科目
其它科目

科数网

试卷93

数学

单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义, 且 $\lim _{x \rightarrow 0} f(x)=0$, 则 ( )
$\text{A.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0, f(x)$ 在 $x=0$ 处可导. $\text{B.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0, f(x)$ 在 $x=0$ 处可导. $\text{C.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$. $\text{D.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0$.

设数列 $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ 与 $\{\mathrm{y_n}\}$ 满足 $\lim _{\mathrm{n} \rightarrow \infty} x_n y_n=0$, 则下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 发散, 则 $\left\{y_n\right\}$ 必发散 $\text{B.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{y_n\right\}$ 必收敛 $\text{C.}$ 若 $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ 有界,则 $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ 必为无穷小 $\text{D.}$ 若 $\left\{\frac{1}{\mathrm{x}_{\mathrm{n}}}\right\}$ 有界,则 $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ 必为无穷小

设函数 $f(x)=(1-\cos x)(2-\cos x) \cdots(n-\cos x)$, 则 $f^{\prime \prime}(0)=$
$\text{A.}$ $(n-1)$ !. $\text{B.}$ $n !$. $\text{C.}$ $(n+1)$ !. $\text{D.}$ 0

设函数 $f(x)$ 具有 2 阶导数, 且 $f(x)>0, f^{\prime \prime}(x) f(x)-\left[f^{\prime}(x)\right]^2>0$, 则
$\text{A.}$ $f^{\prime}(-1) f(1)>f^{\prime}(1) f(-1)$. $\text{B.}$ $f^{\prime}(1) f(1) < f^{\prime}(-1) f(-1)$. $\text{C.}$ $f^2(0)>f(-1) f(1)$. $\text{D.}$ $f^2(0) < f(-1) f(1)$.

$y=f(x)=\frac{\mathrm{e}^x+x \arctan x}{\mathrm{e}^x+x-1}$ 的渐近线条数是
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设 $a>\frac{\mathrm{e}^3}{4}$, 则方程 $a(x+1)^2 \mathrm{e}^x=1$ 的实根个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

试卷二维码

分享此二维码到群,让更多朋友参与