单选题 (共 3 题 ),每题只有一个选项正确
设 $\alpha_1, \alpha_2, \ldots \alpha_m$ 均为 $n$ 维列向量, 那么下列结论正确的是 ( ).
$\text{A.}$ 若 $k_1 \alpha_1+k_2 \alpha_2+\cdots+k_m \alpha_m= 0$, 则 $\alpha_1, \alpha_2, \ldots \alpha_m$ 线性相关.
$\text{B.}$ 若对任意一组不全为零的数 $k_1, k_2, \cdots, k_m$, 都有 $k_1 \alpha_1+k_2 \alpha_2+\cdots+k_m \alpha_m \neq 0$, 则 $\alpha_1, \alpha_2, \ldots \alpha_m$ 线性无关.
$\text{C.}$ 若 $\alpha_1, \alpha_2, \ldots \alpha_m$ 线性相关, 则对任意一组不全为零的数 $k_1, k_2, \cdots, k_m$ 都有 $k_1 \alpha _1+k_2 \alpha _2+\cdots+k_m \alpha _m= 0$.
$\text{D.}$ 若 $0 \alpha_1+0 \alpha_2+\cdots+0 \alpha_m=0$, 则 $\alpha_1, \alpha_2, \ldots \alpha_m$ 线性无关.
任意两个 $n$ 维向量组 $\alpha_1, \cdots \alpha_m$ 和 $\beta_1, \cdots, \beta_m$, 若存在两组不全为 0 的数 $\lambda_1, \cdots, \lambda_m$和 $k_1, \cdots, k_m$, 使得 $\left(\lambda_1+k_1\right) \alpha_1+\cdots+\left(\lambda_m+k_m\right) \alpha_m+\left(\lambda_1-k_1\right) \beta_1+\cdots+\left(\lambda_m-k_m\right) \beta_m= 0$,则
$\text{A.}$ $\alpha_1, \cdots \alpha_m$ 和 $\beta_1, \cdots, \beta_m$ 都线性相关.
$\text{B.}$ $\alpha_1, \cdots \alpha_m$ 和 $\beta_1, \cdots, \beta_m$ 都线性无关.
$\text{C.}$ $\alpha_1+\beta_1, \cdots, \alpha_m+\beta_m, \alpha_1-\beta_1, \cdots, \alpha_m-\beta_m$ 线性无关.
$\text{D.}$ $\alpha_1+\beta_1, \cdots, \alpha_m+\beta_m, \alpha_1-\beta_1, \cdots, \alpha_m-\beta_m$ 线性相关.
已知 $n$ 维向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m(m>2)$ 线性无关, 则()
$\text{A.}$ 对任意一组数 $k_1, k_2, \cdots, k_m$, 都有 $k_1 \alpha_4+k_2 \alpha_2+\cdots+k_m \alpha_m=0$.
$\text{B.}$ $m < n$.
$\text{C.}$ $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中少于 $m$ 个向量构成的向量组均线性相关.
$\text{D.}$ $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中任意两个向量均线性无关.
填空题 (共 2 题 ),请把答案直接填写在答题纸上
向量组 $\alpha_1=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right), \alpha_2=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \alpha_3=\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), \alpha_4=\left(\begin{array}{l}5 \\ 1 \\ 8\end{array}\right), \alpha_5=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$ 的一个极大线性无关组是 .
已知 $A =\left(\begin{array}{ccccc}2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4\end{array}\right)$, 求 $A$ 的列向量组的一个极大线性无关组,并用极大线性无关组表示其它列向量.
解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
已知向量组 $A : \alpha_1=\binom{1}{-1}, \alpha _2=\binom{2}{1}, B : \beta_1=\binom{2}{2}, \beta_2=\binom{3}{4}$, 判断向量组 $A , B$是否等价.
判断向量组 $B$ 能否由向量组 $A$ 线性表示, 如果可以, 求出表达式.
(1) $A : \alpha_1=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \alpha _2=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right), \alpha_3=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), B : \beta_1=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \beta_2=\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$;
(2) $A : \alpha_1=\binom{1}{2}, \alpha_2=\binom{2}{1}, B : \beta_1=\binom{2}{3}, \beta_2=\binom{-1}{4}$;
盘点向量的相关性
(1) $\alpha_1=\left(\begin{array}{l}a \\ 1 \\ 1\end{array}\right), \alpha_2=\left(\begin{array}{c}1 \\ a \\ -1\end{array}\right), \alpha_3=\left(\begin{array}{c}1 \\ -1 \\ a\end{array}\right)$;
(2) $\alpha_1=\left(\begin{array}{l}1 \\ 2 \\ -2 \\ 1\end{array}\right), \alpha_2=\left(\begin{array}{l}0 \\ 1 \\ a \\ 1\end{array}\right), \alpha_3=\left(\begin{array}{l}2 \\ 1 \\ 2 \\ -1\end{array}\right)$.
分别求下列两个向量的内积, 并判断是否正交, 若没有正交, 请利用施密特正交化过程将其化成规范正交向量组.
(1) $\alpha_1=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \alpha_2=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
(2) $\alpha_1=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right), \alpha_2=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
设 $\alpha_1=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), \alpha_2=\left(\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right), \alpha_3=\left(\begin{array}{c}4 \\ -1 \\ 0\end{array}\right)$, 利用施密特正交化过程将其化成规范正交向量组.
设 $R^3$ 的两个基 I 和 II 为
I: $\quad \alpha_1=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \alpha_2=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \alpha_3=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) ;$ II: $\quad \beta_1=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \beta_2=\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right), \beta_3=\left(\begin{array}{l}3 \\ 7 \\ 1\end{array}\right)$
(1)求由基 I 到基 II 的过渡矩阵;
(2)设向量 $\gamma$ 在基 I 中的坐标为 $-2,1,2$, 求 $\gamma$ 在基 II 中的坐标.