解答题 (共 15 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
$\int \frac{x^4}{1+x^2} d x$
$\int \frac{1}{\sin ^2 2 x} d x$
已知 $f^{\prime}\left(\sin ^2 x\right)=\cos 2 x+\tan ^2 x\left(0 \leq x < \frac{\pi}{2}\right), f(0)=1$ ,求 $f(x)$
设 $f(x)$ 具有一阶连续的导数,且 $f^{\prime}(x)+x f^{\prime}(-x)=x$ ,求 $f(x)$
设 $\int f(x) d x=x^2+C$ ,求 $\int x f\left(1-x^2\right) d x$
设 $f(x)= e ^{-x}$ ,求 $\int \frac{f^{\prime}(\ln x)}{x} d x$
设 $f(x)=\left\{\begin{array}{l}x^2, x \leq 0, \\ \sin x, x>0,\end{array}\right.$ 求 $F(x)=\int f(x) d x$.
$\int \frac{x^3+1}{x^4-3 x^3+3 x^2-x} d x$.
$\int \frac{1}{\sqrt{x}+\sqrt[3]{x}} d x$.
$\int \frac{ d x}{\sin 2 x-2 \sin x}$
$\int \frac{1}{x^4+1} d x$
$\int \frac{1}{x} \sqrt{\frac{1-x}{x+1}} d x$.
$\int \frac{1}{3+\sin ^2 x} d x$.
$\int \frac{ e ^{\sin 2 x} \sin ^2 x}{ e ^{2 x}} d x$.
$\int \frac{ d x}{x^4 \sqrt{1-x^2}}$.