解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
(1) $\lim _{x \rightarrow \infty} \mathrm{e}^{\frac{1}{x}}$;
(2) $\lim _{x \rightarrow 0} \ln \frac{\sin x}{x}$;
(3) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}}$;
(4) $\lim _{x \rightarrow 0}\left(1+3 \tan ^2 x\right)^{\cot ^2 x}$;
(6) $\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x \sqrt{1+\sin ^2 x}-x}$;
设 $f(x)$ 在 $\mathbf{R}$ 上连续, 且 $f(x) \neq 0, \varphi(x)$ 在 $\mathbf{R}$ 上有定义, 且有间断点, 则下列陈述中,哪些是对的, 哪些是错的? 如果是对的, 试说明理由; 如果是错的, 试给出一个反例.
(1) $\varphi[f(x)]$ 必有间断点;
(2) $[\varphi(x)]^2$ 必有间断点;
(3) $f[\varphi(x)]$ 末必有间断点;
(4) $\frac{\varphi(x)}{f(x)}$ 必有间断点.
设函数
$$
f(x)= \begin{cases}\mathrm{e}^x, & x < 0 \\ a+x, & x \geqslant 0\end{cases}
$$
应当怎样选择数 $a$, 才能使得 $f(x)$ 成为在 $(-\infty,+\infty)$ 内的连续函数?