微积分测试题

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 1 题 ),每题只有一个选项正确
设 $f(x)$ 是连续函数, 且 $F(x)=\int_x^{\mathrm{e}^{-x}} f(t) \mathrm{d} t$, 则 $F^{\prime}(x)$ 等于
$\text{A.}$ $-\mathrm{e}^{-x} f\left(\mathrm{e}^{-x}\right)-f(x)$. $\text{B.}$ $-\mathrm{e}^{-x} f\left(\mathrm{e}^{-x}\right)+f(x)$. $\text{C.}$ $\mathrm{e}^{-x} f\left(\mathrm{e}^{-x}\right)-f(x)$. $\text{D.}$ $\mathrm{e}^{-x} f\left(\mathrm{e}^{-x}\right)+f(x)$.

填空题 (共 5 题 ),请把答案直接填写在答题纸上
$\int_{-1}^1\left(\sqrt{1-x^2}+\sin ^3 x\right) \mathrm{d} x=$

计算 $\int x \sin x d x$.

$y=x \ln \left(\mathrm{e}+\frac{1}{x^2}\right)$ 的斜渐近线为。

求 $\lim _{x \rightarrow 0}(1+5 x)^{\frac{1}{\sin x}}$;

$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{|x|}{1+\sin x} \mathrm{~d} x=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。