单选题 (共 6 题 ),每题只有一个选项正确
设函数
$$
u(x, y)=\phi(x+y)+\phi(x-y)+\int_{x-y}^{x+y} \psi(t) \mathrm{d} t ,
$$
其中函数 $\phi$ 具有二阶导数, $\psi$ 具有一阶导数,则必有
$\text{A.}$ $\frac{\partial^2 u}{\partial x^2}=-\frac{\partial^2 u}{\partial y^2}$
$\text{B.}$ $\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial y^2}$
$\text{C.}$ $\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial^2 u}{\partial y^2}$
$\text{D.}$ $\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial^2 u}{\partial x^2}$
二元函数 $f(x, y)$ 在点 $(0,0)$ 处可微的一个充分条件是
$\text{A.}$ $\lim _{(x, y) \rightarrow(0,0)}[f(x, y)-f(0,0)]=0$
$\text{B.}$ $\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=0$ ,且 $\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=0$
$\text{C.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)}{\sqrt{x^2+y^2}}=0$
$\text{D.}$ $\lim _{x \rightarrow 0}\left[f_x^{\prime}(x, 0)-f_x^{\prime}(0,0)\right]=0$ ,且 $\lim _{y \rightarrow 0}\left[f_y^{\prime}(0, y)-f_y^{\prime}(0,0)\right]=0$
设函数 $f$ 连续,若 $F(u, v)=\iint_{D_{u v}} \frac{f\left(x^2+y^2\right)}{\sqrt{x^2+y^2}} \mathrm{~d} x \mathrm{~d} y$ ,其中
$$
\begin{aligned}
& D_{u v}: x^2+y^2=1, x^2+y^2=u^2, y=0, y=x \arctan v \\
& (u>1, v>0) \text { ,则 } \frac{\partial F}{\partial u}=
\end{aligned}
$$
$\text{A.}$ $v f\left(u^2\right)$
$\text{B.}$ $\frac{v}{u} f\left(u^2\right)$
$\text{C.}$ $v f(u)$
$\text{D.}$ $\frac{v}{u} f(u)$
设函数 $f$ 连续,若 $F(u, v)=\iint_{D_{u v}} \frac{f\left(x^2+y^2\right)}{\sqrt{x^2+y^2}} \mathrm{~d} x \mathrm{~d} y$ ,其中 $D_{u v}: x^2+y^2=1, x^2+y^2=u^2, y=0, y=v x$ $(u>1, v>0)$ ,则 $\frac{\partial F}{\partial u}=$
$\text{A.}$ $v f\left(u^2\right)$
$\text{B.}$ $\frac{v}{u} f\left(u^2\right)$
$\text{C.}$ $v f(u)$
$\text{D.}$ $\frac{v}{u} f(u)$
设函数 $z=z(x, y)$ 由方程 $F\left(\frac{y}{x}, \frac{z}{x}\right)=0$ 确定, 其中 $F$ 为可微函数, 且 $F_2^{\prime} \neq 0$, 则 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=$
$\text{A.}$ ${x}$
$\text{B.}$ $z$
$\text{C.}$ $-x$
$\text{D.}$ $-z$
设函数 $z=z(x, y)$ 由方程 $F\left(\frac{y}{x}, \frac{z}{x}\right)=0$ 确定,其中 $\boldsymbol{F}$ 为可微函数,且 $F_2^{\prime} \neq 0$ ,则 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=$
$\text{A.}$ $x$
$\text{B.}$ $z$
$\text{C.}$ $-x$
$\text{D.}$ $-z$