k1

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 4 题 ),每题只有一个选项正确
已知二元函数 $F(x, y)=f(x, y) \varphi(x, y)$, 其中 $\varphi(x, y)$ 在点 $(0,0)$ 处连续, 且 $f(0,0)=0$, $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f_x^{\prime}(x, y)=\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f_y^{\prime}(x, y)=0$, 则 $F(x, y)$ 在点 $(0,0)$ 处
$\text{A.}$ 不连续 $\text{B.}$ 连续, 但偏导数不存在 $\text{C.}$ 连续, 偏导数存在但不可微 $\text{D.}$ 可微

设 $f(x, y)$ 为可微函数, $f_y^{\prime}(x, x+y)=2 y, f(x, x)=x^2$, 则 $f_x^{\prime}(x, y)=$.
$\text{A.}$ $4 x$ $\text{B.}$ $4 x+2 y$ $\text{C.}$ $2 y$ $\text{D.}$ $4 x-2 y$

设 $f(x, y)=\left\{\begin{array}{cl}\frac{x^2 y}{x^2+y^2}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.$ 则 $f(x, y)$ 在点 $(0,0)$ 处
$\text{A.}$ 可微, 且取极值 $\text{B.}$ 可微但不取极值 $\text{C.}$ 不可微,但取极值 $\text{D.}$ 不可微,也不取极值

若函数 $z=f(x, y)$ 在点 $(1,1)$ 处连续, 且 $\lim _{\substack{x \rightarrow 1 \\ y=1}} \frac{f(x, y)-2 x+4 y-1}{\sqrt{x^2+y^2-2 x-2 y+3}-1}=2$, 则
$\text{A.}$ $f(x, y)$ 在点 $(1,1)$ 处不存在偏导数. $\text{B.}$ $f(x, y)$ 在点 $(1,1)$ 处存在偏导数但不可微. $\text{C.}$ $f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\left.\mathrm{d} z\right|_{(1.1)}=2 \mathrm{~d} x-4 \mathrm{~d} y$. $\text{D.}$ $f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\left.\mathrm{d} z\right|_{(1.1)}=-2 \mathrm{~d} x+4 \mathrm{~d} y$.

填空题 (共 2 题 ),请把答案直接填写在答题纸上
已知函数 $z=\ln \left(1+x^2+y^2\right)$ ,则 $\left.d z\right|_{(1,2)}=$ ?

函数 $z=x y+\ln y$ 在点 $(2,1)$ 处的梯度方向为?

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷