单选题 (共 6 题 ),每题只有一个选项正确
设 $X_1, X_2$ 是来自总体 $X$ 的样本, 作为 $E X$ 的无偏估计中, 最有效的是
$\text{A.}$ $\frac{3}{5} X_1+\frac{2}{5} X_2$,
$\text{B.}$ $\frac{1}{4} X_1+\frac{3}{4} X_2$
$\text{C.}$ $\frac{1}{3} X_1+\frac{2}{3} X_2$
$\text{D.}$ $\frac{1}{2} X_1+\frac{1}{2} X_2$
设 $X_1, X_2, \cdots, X_n$ 是取自二项总体 $B\left(5, \frac{1}{3}\right)$ 的简单随机样本, $\bar{X}=$ $\frac{1}{n} \sum_{i=1}^n X_i$ 是其样本均值, 则
$\text{A.}$ $\operatorname{Cov}\left(X_i, \bar{X}\right)=\frac{5}{3 n}$
$\text{B.}$ $\operatorname{Cov}\left(X_i, \bar{X}\right)=\frac{10}{9 n}$
$\text{C.}$ $D\left(X_i+\bar{X}\right)=\frac{5(n+2)}{3 n}$
$\text{D.}$ $D\left(X_i-\bar{X}\right)=\frac{10(n+2)}{9 n}$
设 $X_1, X_2, \ldots, X_n(n \geq 3)$ 为来自总体 $X$ 的一个简单随机样本, 则下列估计量中不是总体期望 $\mu$ 的无偏估计量的是
$\text{A.}$ $\bar{X}$
$\text{B.}$ $0.1 \times\left(6 X_1+4 X_2\right)$
$\text{C.}$ $X_1+X_2+\cdots+X_n$
$\text{D.}$ $X_1+X_2-X_3$
已知 $E X=-1, D X=3$ ,则 $E\left[3\left(X^2-2\right)\right]=$
$\text{A.}$ 9
$\text{B.}$ 6
$\text{C.}$ 30
$\text{D.}$ 36
设总体 $Z=X \cos Y$, 其中 $X \sim E(\lambda), Y \sim U(0, a), X$ 与 $Y$ 相互独立, $a$ 为已知参数, $\lambda$ 为末知 参数. 若要利用 $Z$ 的一阶矩对参数 $\lambda$ 进行矩估计, 则下列 $a$ 的四种取值中, 使得矩估计法可行 的是
$\text{A.}$ $a=\frac{\pi}{2}$.
$\text{B.}$ $a=\pi$.
$\text{C.}$ $a=2 \pi$.
$\text{D.}$ $a=4 \pi$.
设 $X_1, X_2, \cdots, X_n$ 是来自总体 $N(0,1)$ 的简单随机样本, 记 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$, 则 $D\left(\bar{X}^2\right)=$
$\text{A.}$ $\frac{1}{n^2}$.
$\text{B.}$ $\frac{2}{n^2}$.
$\text{C.}$ $\frac{3}{n^2}$.
$\text{D.}$ $\frac{4}{n^2}$.