单选题 (共 6 题 ),每题只有一个选项正确
当 $x \rightarrow 0^{+}$时, $(1+x)^{\frac{1}{x}}-\left(e+a x+b x^2\right)$ 是比 $x^2$ 高阶的无穷小, 则
$\text{A.}$ $a=\frac{e}{2}, b=-\frac{11}{24} e$.
$\text{B.}$ $a=-\frac{e}{2}, b=\frac{11}{24} e$.
$\text{C.}$ ${a}={e}, {b}=\frac{{e}}{2}$.
$\text{D.}$ ${a}={e}, {b}=-\frac{{e}}{{2}}$.
设周期函数 $f(x)$ 在 $(-\infty,+\infty)$ 内可导, 周期为 4 , 又 $\lim _{x \rightarrow 0} \frac{f(1)-f(1-x)}{2 x}=-1$,则曲线 $y=f(x)$ 在 $x=5$ 处切线斜率为
$\text{A.}$ $\frac{1}{2}$
$\text{B.}$ 0
$\text{C.}$ -1
$\text{D.}$ -2
下列直线中不是曲线 $y=\sqrt{4 x^2+x} \ln \left(2+\frac{1}{x}\right)$ 的渐近线的是
$\text{A.}$ $x=-\frac{1}{2}$.
$\text{B.}$ $y=2 x \ln 2+\frac{1}{4} \ln 2+1$.
$\text{C.}$ $y=2 x \ln 2+\frac{1}{4} \ln 2$.
$\text{D.}$ $y=-2 x \ln 2-\frac{1}{4} \ln 2-1$.
设曲线 $y=f(x)$ 由 $\left\{\begin{array}{l}x=t|t|, \\ y=t^2 \mathrm{e}^{\frac{1}{3}}\end{array}\right.$ 确定, 则该曲线的渐近线的条数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设曲线 $L: y=\ln x$, 则
$\text{A.}$ $L$ 在 $\left(\frac{\sqrt{2}}{2},-\frac{\ln 2}{2}\right)$ 点取得最小曲率半径 $\frac{3 \sqrt{3}}{2}$.
$\text{B.}$ $L$ 在 $\left(\frac{\sqrt{2}}{2},-\frac{\ln 2}{2}\right)$ 点取得最大曲率半径 $\frac{3 \sqrt{3}}{2}$.
$\text{C.}$ $L$ 在 $\left(\frac{\mathrm{e}}{2}, 1-\ln 2\right)$ 点取得最小曲率半径 $\frac{\sqrt{3}}{2}$.
$\text{D.}$ $L$ 在 $\left(\frac{\mathrm{e}}{2}, 1-\ln 2\right)$ 点取得最大曲率半径 $\frac{\sqrt{3}}{2}$.
已知 $f(x)=(x-1)(2 x+1)$, 则在区间 $\left(\frac{1}{2}, 1\right)$ 内 $f(x)$.
$\text{A.}$ 单调增加, 且为凹弧
$\text{B.}$ 单调减少, 且为凹弧
$\text{C.}$ 单调减少, 且为凸弧
$\text{D.}$ 单调增加, 且为凸弧