单选题 (共 6 题 ),每题只有一个选项正确
四阶行列式 $\left|\begin{array}{cccc}a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & b_3 & a_3 & 0 \\ b_4 & 0 & 0 & a_4\end{array}\right|$ 的值等于
$\text{A.}$ $a_1 a_2 a_3 a_4-b_1 b_2 b_3 b_4$.
$\text{B.}$ $a_1 a_2 a_3 a_4+b_1 b_2 b_3 b_4$.
$\text{C.}$ $\left(a_1 a_2-b_1 b_3\right)\left(a_3 a_4-b_3 b_4\right)$.
$\text{D.}$ $\left(a_2 a_3-b_2 b_3\right)\left(a_1 a_4-b_1 b_4\right)$.
行列式 $\left|\begin{array}{llll}0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \\ c & 0 & 0 & d\end{array}\right|=$
$\text{A.}$ $(a d-b c)^2$.
$\text{B.}$ $-(a d-b c)^2$.
$\text{C.}$ $a^2 d^2-b^2 c^2$.
$\text{D.}$ $b^2 c^2-a^2 d^2$.
若 $\alpha _1, \alpha _2, \alpha _3, \beta _1, \beta _2$ 都是 4 维列向量, 且 4 阶行列式 $\left| \alpha _1, \alpha _2, \alpha _3, \beta _1\right|=m$, $\left| \alpha _1, \alpha _2, \beta _2, \alpha _3\right|=n$, 则 4 阶行列式 $\left| \alpha _3, \alpha _2, \alpha _1, \beta _1+ \beta _2\right|$ 等于
$\text{A.}$ $m+n$.
$\text{B.}$ $-(m+n)$.
$\text{C.}$ $n-m$.
$\text{D.}$ $m-n$.
记行列式 $\left|\begin{array}{cccc}x-2 & x-1 & x-2 & x-3 \\ 2 x-2 & 2 x-1 & 2 x-2 & 2 x-3 \\ 3 x-3 & 3 x-2 & 4 x-5 & 3 x-5 \\ 4 x & 4 x-3 & 5 x-7 & 4 x-3\end{array}\right|$ 为 $f(x)$, 则方程 $f(x)=0$ 的的个数为
$\text{A.}$ 1.
$\text{B.}$ 2 .
$\text{C.}$ 3 .
$\text{D.}$ 4 .
设行列式 $D=\left|\begin{array}{cccc}3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2\end{array}\right|$, 则第四行各元素余子式之和的值为
$\text{A.}$ 14
$\text{B.}$ -14
$\text{C.}$ 28
$\text{D.}$ -28
$n$阶行列式
$$
\left|\begin{array}{cccccc}
a & b & 0 & \cdots & 0 & 0 \\
0 & a & b & \cdots & 0 & 0 \\
0 & 0 & a & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a & b \\
b & 0 & 0 & \cdots & 0 & a
\end{array}\right|_{n \times n}
$$
得值为
$\text{A.}$ $a^n+(-1)^{n+1} b^n$
$\text{B.}$ 0
$\text{C.}$ $a^n-b^n$
$\text{D.}$ $a^n+b^n$