陈思睿的期末复习卷

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 2 题 ),每题只有一个选项正确
设 $f^{\prime}\left(x_0\right)=f^{\prime \prime}\left(x_0\right)=0, f^{\prime \prime \prime}\left(x_0\right)>0$, 则下列选项正确的是
$\text{A.}$ $f^{\prime}\left(x_0\right)$ 是 $f^{\prime}(x)$ 的极大值. $\text{B.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极大值. $\text{C.}$ $f\left(x_0\right)$ 是 $f(x)$ 极小值. $\text{D.}$ $\left(x_0, f\left(x_0\right)\right)$ 是曲线 $y=f(x)$ 的拐点.

设 $\alpha(x)=\frac{1-x}{1+x}, \beta(x)=3-3 \sqrt[3]{x}$, 则当 $x \rightarrow 1$ 时 $($ )
$\text{A.}$ $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小, 但不是等价无穷小; $\text{B.}$ $\alpha(x)$ 与 $\beta(x)$是等价无穷小; $\text{C.}$ $\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小; $\text{D.}$ $\beta(x)$ 是比 $\alpha(x)$ 高阶的无穷小.

填空题 (共 4 题 ),请把答案直接填写在答题纸上
曲线 $y=\left(1+\frac{1}{x}\right)^{x-1}$ 有水平渐近线 ________ 和铅直渐近线 ________

函数 $f(x)=\frac{x^2-x}{x^2-1} \sqrt{1+\frac{1}{x^2}}$ 的无穷间断点的个数为

函数 $y=\sqrt{x-1}+\frac{\sqrt{x-1}}{\sqrt{x-2}}$ 的定义域为

若 $f^{\prime}\left(x_0\right)$ 存在, 则 $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0-\Delta x\right)-f\left(x_0+\Delta x\right)}{\Delta x}=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷