厚德载物

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
3.考试结束后, 将本试卷和答题卡一并交回。
4.本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)$ 在闭区间 $[a, b]$ 上连续,则在开区间 $(a, b)$ 内 $f(x)$ 必有 $(\quad)$
$\text{A.}$ 导函数 $\text{B.}$ 原函数 $\text{C.}$ 最大值或最小值 $\text{D.}$ 极值

下列说法不正确的是()。
$\text{A.}$ 一切初等函数在其定义区间上都存在有原函数 $\text{B.}$ 不连续的函数也可能存在有原函数 $\text{C.}$ 连续的奇函数的原函数都是偶函数 $\text{D.}$ 连续的偶函数的原函数都是奇函数

以下结论正确的是 ( )
$\text{A.}$ $d \left[\int f(x) d x\right]=f(x)$ $\text{B.}$ $\left[\int f(x) d x\right]^{\prime}=\int f^{\prime}(x) d x$ $\text{C.}$ $\int f^{\prime}(x) d x=f(x)$ $\text{D.}$ $d \left[\int f(x) d x\right]=f(x) d x$

若 $f(x)$ 的导函数为 $\sin x$ ,则 $f(x)$ 的一个原函数为 $( I$ 。
$\text{A.}$ $1+\sin x$ $\text{B.}$ $1-\sin x$ $\text{C.}$ $1+\cos x$ $\text{D.}$ $1-\cos x$

若 $\int f(x) d x=F(x)+C$ ,则 $\int f(a x+b) d x=(\quad)$.
$\text{A.}$ $a F(a x+b)+C$ $\text{B.}$ $\frac{F(a x+b)}{a}+C$ $\text{C.}$ $\frac{F(x)}{a}+C$ $\text{D.}$ $a F ( x )+C$

$\lim _{x \rightarrow 0} \frac{\int_{\cos x}^1 e^{-t^2} d t}{x^2}=(\quad)$.
$\text{A.}$ $\frac{1}{e}$ $\text{B.}$ $\infty$ $\text{C.}$ $-\frac{1}{2 e}$ $\text{D.}$ $\frac{1}{2 e}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷