单选题 (共 6 题 ),每题只有一个选项正确
曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x-1}\right)$ 的斜斩近线方程为
$\text{A.}$ $y=x+\mathrm{e}$
$\text{B.}$ $y=x+\frac{1}{\mathrm{e}}$
$\text{C.}$ $y=x$
$\text{D.}$ $y=x-\frac{1}{\mathrm{e}}$
设函数 $y=f(x)$ 由 $\left\{\begin{array}{l}x=2 t+|t|, \\ y=|t| \sin t\end{array}\right.$ 确定,则
$\text{A.}$ $f(x)$ 连续, $f^{\prime}(0)$ 不存在
$\text{B.}$ $f^{\prime}(0)$ 存在,但 $f^{\prime}(x)$ 在 $x=0$ 处不连续
$\text{C.}$ $f^{\prime}(x)$ 连续, $f^{\prime \prime}(0)$ 不存在
$\text{D.}$ $f^{\prime \prime}(0)$ 存在, $f^{\prime}(x)$ 在 $x=0$ 处不连续
已知 $a_n < b_n(n=1,2, \cdots)$ ,若级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 均收敛,则 " $\sum_{n=1}^{\infty} a_n$ 绝对收敛 "是 " $\sum_{n=1}^{\infty} b_n$ 绝对收敛"的( )
$\text{A.}$ 充分必要条件
$\text{B.}$ 充分不必要条件
$\text{C.}$ 必要不充分条件
$\text{D.}$ 既不充分也不必要条件
函数 $f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{1+x^2}}, \quad x \leq 0, \\ (x+1) \cos x, x>0\end{array}\right.$ 的一个原函数为
$\text{A.}$ ${F}(x)= \begin{cases}\ln \left(\sqrt{1+x^2}-x\right), & x \leq 0 \\ (x+1) \cos x-\sin x, & x>0\end{cases}$
$\text{B.}$ $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^2}-x\right)+1, x \leq 0 \\ (x+1) \cos x-\sin x, x>0\end{array}\right.$
$\text{C.}$ $F(x)= \begin{cases}\ln \left(\sqrt{1+x^2}+x\right), & x \leq 0 \\ (x+1) \sin x+\cos x, & x>0\end{cases}$
$\text{D.}$ $F(x)=\left\{\begin{array}{l}\ln \left(\sqrt{1+x^2}+x\right)+1, x \leq 0 \\ (x+1) \sin x+\cos x, x>0\end{array}\right.$
已知 $\left\{x_n\right\},\left\{y_n\right\}$ 满足:
$$
x_1=y_1=\frac{1}{2}, x_{n+1}=\sin x_n, y_{n+1}=y_n^2(n=1,2, \cdots)
$$
则当 $n \rightarrow \infty$ 时,()
$\text{A.}$ $x_n$ 是 $y_n$ 的高阶无穷小
$\text{B.}$ $y_n$ 是 $x_n$ 的高阶无穷小
$\text{C.}$ $x_n$ 与 $y_n$ 是等价无穷小
$\text{D.}$ $x_n$ 与 $y_n$ 是同阶但不等价的无穷小
若函数 $f(\alpha)=\int_2^{+\infty} \frac{1}{x(\ln x)^{\alpha+1}} \mathrm{~d} x$ 在 $\alpha=\alpha_0$ 处取得最小值,则 $\alpha_0=(\quad)$
$\text{A.}$ $-\frac{1}{\ln (\ln 2)}$
$\text{B.}$ $-\ln (\ln 2)$
$\text{C.}$ $\frac{1}{\ln 2}$
$\text{D.}$ $\ln 2$