3

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 2 题 ),每题只有一个选项正确
下列矩阵中,与矩阵 $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ 相似的为
$\text{A.}$ $\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

设 $A, B$ 为 $n$ 阶矩阵,记 $r(X)$ 为矩阵 $X$ 的秩, $(X, Y)$ 表示分块矩阵,则
$\text{A.}$ $r(A, A B)=r(A)$ $\text{B.}$ $r(A, B A)=r(A)$ $\text{C.}$ $r(A, B)=\max \{r(A), r(B)\}$ $\text{D.}$ $r(A, B)=r\left(A^T, B^T\right)$

填空题 (共 1 题 ),请把答案直接填写在答题纸上
设 $A$ 为三阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 为线性无关向量组. 若
$$
\begin{aligned}
& A \alpha_1=\alpha_1+\alpha_2 , A \alpha_2=\alpha_2+\alpha_3 , A \alpha_3=\alpha_1+\alpha_3 , \\
& \text { 则 }|A|=
\end{aligned}
$$

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设实二次型 $f\left(x_1, x_2, x_3\right)=\left(x_1-x_2+x_3\right)^2+\left(x_2+x_3\right)^2$ $+\left(x_1+a x_3\right)^2$ ,其中 $a$ 是参数.
(1)求 $f\left(x_1, x_2, x_3\right)=0$ 的解;
(2) 求 $f\left(x_1, x_2, x_3\right)$ 的规范形.

已知 $a$ 是常数,且矩阵 $A=\left(\begin{array}{ccc}1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a\end{array}\right)$ 可经初等列变换化为矩阵 $B=\left(\begin{array}{ccc}1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1\end{array}\right)$.
(1)求 $a$ ;
(2)求满足 $\boldsymbol{A P}=\boldsymbol{B}$ 的可逆矩阵 $\boldsymbol{P}$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷