《高等数学解题指南》导数的概念与基本训练

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 2 题 ),每题只有一个选项正确
设 $f(0)=0$ ,则 $f(x)$ 在点 $x=0$ 处可导的充要条件是
$\text{A.}$ $\lim _{h \rightarrow 0} \frac{1}{h^2} f(1-\cos h)$ 存在 $\text{B.}$ $\lim _{h \rightarrow 0} \frac{1}{h} f\left(1- e ^h\right)$ 存在 $\text{C.}$ $\lim _{h \rightarrow 0} \frac{1}{h^2} f(h-\sin h)$ 存在 $\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(2 h)-f(h)}{h}$ 存在

设 $f(x)=\left(x^2-2 x-3\right)\left|x^3-x\right|$ 的不可导点的个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

填空题 (共 4 题 ),请把答案直接填写在答题纸上
设 $f(x)$ 在点 $x=x_0$ 处连续,且 $\lim _{x \rightarrow x_0} \frac{f(x)}{x-x_0}=a$ ,则 $f^{\prime}\left(x_0\right)$

设 $f^{\prime}\left(x_0\right)$ 存在,则$\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0-3 \Delta x\right)-f\left(x_0\right)}{\Delta x}$

设 $f^{\prime}\left(x_0\right)$ 存在,则$\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0-\Delta x\right)}{\Delta x}=$

设 $f(x)=x(x+1)(x+2) \cdots(x+100)$ ,求 $f^{\prime}(-2)$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。