2试卷具体名称

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


填空题 (共 1 题 ),请把答案直接填写在答题纸上
微分方程初值问题 $\left\{\begin{array}{l}\left(1+e^x\right) y y^{\prime}=e^x \\ y(0)=\sqrt{2 \ln 2}\end{array}\right.$ 的解为 $y(x)=$

解答题 (共 5 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
验证 $y=C_1 \cos 3 x+C_2 \sin 3 x+\frac{1}{32}(4 x \cos x+\sin x) \quad\left(C_1, \quad C_2\right.$ 是任意常数)是方程 $y^{\prime \prime}+9 y=x \cos x$ 的通解.

求方程 $\frac{d^2 s}{d t^2}+2 \frac{d s}{d t}+s=0$ 满足初始条件 $\left.s\right|_{t=0}=4,\left.s^{\prime}\right|_{t=0}=-2$ 的特解.

求微分方程 $y^n+3 y^{\prime}+2 y=3 x e^{-x}$ 的通解.

求微分方程 $y^{\prime \prime}-2 y^{\prime}+5 y=e^x \sin 2 x$ 的一个特解.

设可导函数 $\varphi(x)$ 满足 $\varphi(x) \cos x+2 \int_0^x \varphi(t) \sin t d t=x+1$ ,求 $\varphi(x)$ .

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。