数分第一阶段测试

数学分析

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
将 $f(x)=\sin x, x \in[0, \pi]$ 展开成余弦级数.

$\lim _{n \rightarrow+\infty} n\left(\frac{1}{n^2+1}+\frac{1}{n^2+2^2}+\cdots+\frac{1}{n^2+n^2}\right)$

$I=\int e^x \cos ^2 x d x$

设 $a>0, b>0$ ,求极限 $\lim _{n \rightarrow \infty}\left(a^n+b^n\right)^{\frac{1}{n}}$ .

用单调有界数列的收敛定理,证明 $\left\{\frac{n^5}{2^n}\right\}$ 收敛,并求其极限.

已知 $n \in N$ ,求不定积分 $I_n=\int \tan ^n x d x$ 的递推公式.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷