高等数学周练2

数 学



单选题 (共 6 题 ),每题只有一个选项正确
函数 $f(x)=x \sin x$
$\text{A.}$ 当 $x \rightarrow \infty$ 时为无穷大. $\text{B.}$ 在 $(-\infty,+\infty)$ 内有界. $\text{C.}$ 在 $(-\infty,+\infty)$ 内无界. $\text{D.}$ 当 $x \rightarrow \infty$ 时有有限极限.

设 $\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(a x+b x^2\right)}{x^2}=2$, 则
$\text{A.}$ $a=1, b=-\frac{5}{2}$. $\text{B.}$ $a=0, b=-2$. $\text{C.}$ $a=0, b=-\frac{5}{2}$. $\text{D.}$ $a=1, b=-2$.

设数列通项
$$x_n=\left\{\begin{array}{ll}
\frac{n^2+\sqrt{n}}{n}, & n \text { 为奇数, } \\
\frac{1}{n}, & n \text { 为偶数. }
\end{array}\right.
$$
则当 $n \rightarrow \infty$ 时, $ x_n$ 是
$\text{A.}$ 无穷大量. $\text{B.}$ 无穷小量. $\text{C.}$ 有界变量. $\text{D.}$ 无界变量.

$\lim _{x \rightarrow x_0} f(x)=\infty$ 是 $f(x)$ 在 $x_0$ 的某空心邻域内无界的 ( ) 条件。
$\text{A.}$ 充分 $\text{B.}$ 必要 $\text{C.}$ 充分必要 $\text{D.}$ 无关

设 $f(x)=\left\{\begin{array}{cc}x^2, & x \leqslant 0, \\ x^2+x, & x>0 .\end{array}\right.$ 则( )
$\text{A.}$ $f(-x)=\left\{\begin{array}{cc}-x^2, & x \leqslant 0, \\ -\left(x^2+x\right), & x>0 .\end{array}\right.$ $\text{B.}$ $f(-x)=\left\{\begin{array}{cc}-\left(x^2+x\right), & x < 0, \\ -x^2, & x \geqslant 0 .\end{array}\right.$ $\text{C.}$ $f(-x)=\left\{\begin{array}{cc}x^2, & x \leqslant 0, \\ x^2-x, & x>0 .\end{array}\right.$ $\text{D.}$ $f(-x)=\left\{\begin{array}{cc}x^2-x, & x < 0, \\ x^2, & x \geqslant 0 .\end{array}\right.$

设函数 $f(x)=x \cdot \tan x \cdot e^{\sin x}$ ,则 $f(x)$ 是( )

$\text{A.}$ 偶函数 $\text{B.}$ 无界函数 $\text{C.}$ 周期函数 $\text{D.}$ 单调函数

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。