高等数学2kmath

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
3.考试结束后, 将本试卷和答题卡一并交回。
4.本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
若 $\sum_{n=1}^{\infty} a_{n}(x-1)^{n}$ 在 $x=-1$ 处收敛,则此级数在 $x=2$ 处
$\text{A.}$ 条件收敛. $\text{B.}$ 绝对收敛. $\text{C.}$ 发散. $\text{D.}$ 收敛性不能确定.

设 $D$ 是 $x O y$ 平面上以 $(1,1),(-1,1)$ 和 $(-1,-1)$ 为顶点的三角形区域, $D_{1}$ 是 $D$ 在第一象限的部分, 则 $\iint_{D}(x y+\cos x \sin y) \mathrm{d} x \mathrm{~d} y$ 等于(  )
$\text{A.}$ $2 \iint_{D_{1}} \cos x \sin y \mathrm{~d} x \mathrm{~d} y$. $\text{B.}$ $2 \iint_{D_{1}} x y \mathrm{~d} x \mathrm{~d} y$. $\text{C.}$ $4 \iint_{D_{1}}(x y+\cos x \sin y) \mathrm{d} x \mathrm{~d} y$. $\text{D.}$ 0

二元函数 $f(x, y)$ 在点 $\left(x_{0}, y_{0}\right)$ 处两个偏导数 $f_{x}^{\prime}\left(x_{0}, y_{0}\right), f_{y}^{\prime}\left(x_{0}, y_{0}\right)$ 存在是 $f(x, y)$ 在该点连续的
$\text{A.}$ 充分条件而非必要条件. $\text{B.}$ 必要条件而非充分条件. $\text{C.}$ 充分必要条件. $\text{D.}$ 既非充分条件又非必要条件.

设 $f(x, y)$ 在点 $P_0\left(x_0, y_0\right)$ 处有二阶连续偏导数, 且 $f(x, y)$ 在 $P_0$ 处取得极大 值, 则
$\text{A.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \geqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \geqslant 0$. $\text{B.}$ $f_{x x}^{\prime \prime}\left(P_0\right) < 0, f_{y y}^{\prime \prime}\left(P_0\right) < 0$. $\text{C.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \leqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \leqslant 0$. $\text{D.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \leqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \geqslant 0$.

由方程 $x y z+\sqrt{x^2+y^2+z^2}=\sqrt{2}$ 所确定的函数 $z=z(x, y)$ 在点 $(1,0,1)$ 处的全微分 $\left.\mathrm{d} z\right|_{\text {(1.0.1) }}=$
$\text{A.}$ $-\mathrm{d} x-\sqrt{2} \mathrm{~d} y$. $\text{B.}$ $-\mathrm{d} x+\sqrt{2} \mathrm{~d} y$. $\text{C.}$ $\mathrm{d} x+\sqrt{2} \mathrm{~d} y$. $\text{D.}$ $\mathrm{d} x-\sqrt{2} \mathrm{~d} y$.

设 $L: x^2+y^2=R^2(R>0)$, 则曲线积分 $\int_L\left(x^2+y^2\right) \mathrm{d} s=$
$\text{A.}$ $\pi R^2$; $\text{B.}$ $\pi R^3$; $\text{C.}$ $2 \pi R^2$; $\text{D.}$ $2 \pi R^3$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷