科数网
试题 ID 10029
【所属试卷】
第十四届大学生数学竞赛初赛(补赛二)试题及解答(非数学类)
设函数 $f(x)=\mathrm{e}^{-x} \int_0^x \frac{t^{2023}}{1+t^2} \mathrm{~d} t$, 正整数 $n \leq 2023$, 求导数 $f^{(n)}(0)$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)=\mathrm{e}^{-x} \int_0^x \frac{t^{2023}}{1+t^2} \mathrm{~d} t$, 正整数 $n \leq 2023$, 求导数 $f^{(n)}(0)$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见