科数网
试题 ID 10032
【所属试卷】
第十四届大学生数学竞赛初赛(补赛二)试题及解答(非数学类)
设 $f(x)$ 是 $[-1,1]$ 上的连续的偶函数, 计算曲线积分:
$I=\oint_L \frac{x^2+y^2}{2 \sqrt{1-x^2}} \mathrm{~d} x+f(x) \mathrm{d} y$, 其中曲线 $L$ 为正向圆周 $x^2+y^2=-2 y$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 是 $[-1,1]$ 上的连续的偶函数, 计算曲线积分:
$I=\oint_L \frac{x^2+y^2}{2 \sqrt{1-x^2}} \mathrm{~d} x+f(x) \mathrm{d} y$, 其中曲线 $L$ 为正向圆周 $x^2+y^2=-2 y$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见