科数网
试题 ID 10154
【所属试卷】
中国科技大学2018-2019第二学年《概率论与数理统计》期末考试试卷
设 $X$ 的概率密度函数为 $f(x)=(1+\theta) x^\theta, 0 < x < 1$. 现考虑假设检验问题 $H_0: \theta=5 \leftrightarrow H_1: \theta=3$. 该检验的否定域为 $X>1 / 2$, 则犯第一类错误的概率和第二类错误的概率分别为多少?
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $X$ 的概率密度函数为 $f(x)=(1+\theta) x^\theta, 0 < x < 1$. 现考虑假设检验问题 $H_0: \theta=5 \leftrightarrow H_1: \theta=3$. 该检验的否定域为 $X>1 / 2$, 则犯第一类错误的概率和第二类错误的概率分别为多少?
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见