科数网
试题 ID 10172
【所属试卷】
中国科学技术大学2019-2020学年第一学期《概率论与数理统计》期末试卷
设随机变量 $X, Y$ 和 $Z$ 相互独立, 且均服从参数为 1 的指数分布. 记
$$
U=\frac{X}{X+Y}, \quad V=\frac{X+Y}{X+Y+Z}, \quad W=X+Y+Z .
$$
(1) 计算随机向量 $(U, V, W)$ 的联合密度函数.
(2) 随机变量 $U, V$ 和 $W$ 是否相互独立? 请证明你的结论.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设随机变量 $X, Y$ 和 $Z$ 相互独立, 且均服从参数为 1 的指数分布. 记
$$
U=\frac{X}{X+Y}, \quad V=\frac{X+Y}{X+Y+Z}, \quad W=X+Y+Z .
$$
(1) 计算随机向量 $(U, V, W)$ 的联合密度函数.
(2) 随机变量 $U, V$ 和 $W$ 是否相互独立? 请证明你的结论.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见