科数网
试题 ID 10294
【所属试卷】
武忠祥B站每日一题2023年10月卷
设 $f(x)$ 是可导函数, 且 $f(0)=0, g(x)=\int_0^1 x f(t x) d t$, 并满足方程 $f^{\prime}(x)+g^{\prime}(x)=x$, 则由曲线 $y=f(x), y=e^{-x}$ 及直线 $x=0, x=2$围成平面图形的面积为
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 是可导函数, 且 $f(0)=0, g(x)=\int_0^1 x f(t x) d t$, 并满足方程 $f^{\prime}(x)+g^{\prime}(x)=x$, 则由曲线 $y=f(x), y=e^{-x}$ 及直线 $x=0, x=2$围成平面图形的面积为
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见