• 试题 ID 10313


已知函数 $f(x), g(x)$ 可导, 且 $f^{\prime}(x)>0, g^{\prime}(x) < 0$, 则
A $\int_{-1}^0 f(x) g(x) \mathrm{d} x>\int_0^1 f(x) g(x) \mathrm{d} x$.
B $\int_{-1}^0|f(x) g(x)| \mathrm{d} x>\int_0^1|f(x) g(x)| \mathrm{d} x$.
C $\int_{-1}^0 f[g(x)] \mathrm{d} x>\int_0^1 f[g(x)] \mathrm{d} x$.
D $\int_{-1}^0 f[f(x)] \mathrm{d} x>\int_0^1 g[g(x)] \mathrm{d} x$.
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见