科数网
试题 ID 10336
【所属试卷】
2023年华东师范大学研究生入学考试数学分析试题解答
设立体区域 $\Omega$ 是由 $O y z$ 面曲线 $y^2+z^4-4 z^2=0, z \geq 0$ 绕 $z$ 轴旋转一周所形成的曲面和 $O x y$ 平面所围成的点 $(x, y, z) \in \Omega$ 处的密度为 $z=u(x, y, z)$, 求重心坐标.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设立体区域 $\Omega$ 是由 $O y z$ 面曲线 $y^2+z^4-4 z^2=0, z \geq 0$ 绕 $z$ 轴旋转一周所形成的曲面和 $O x y$ 平面所围成的点 $(x, y, z) \in \Omega$ 处的密度为 $z=u(x, y, z)$, 求重心坐标.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见