科数网
试题 ID 10343
【所属试卷】
2023年华东师范大学研究生入学考试数学分析试题解答
若数列 $\left\{a_n\right\}$ 满足 $\left(2-a_n\right) a_{n+1}=1$, 证明:
(a)存在正整数 $k$, 使得 $a_k \leq 1$.
(b) 数列 $\left\{a_n\right\}$ 存在极限, 并求其极限值.
(c) 若 $a_1 \neq 1$, 则 $a_n(n=1,2, \cdots)$ 两两不等.
(d) 满足题设且 $a_1 \neq 1$ 的数列 $\left\{a_n\right\}$ 存在.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
若数列 $\left\{a_n\right\}$ 满足 $\left(2-a_n\right) a_{n+1}=1$, 证明:
(a)存在正整数 $k$, 使得 $a_k \leq 1$.
(b) 数列 $\left\{a_n\right\}$ 存在极限, 并求其极限值.
(c) 若 $a_1 \neq 1$, 则 $a_n(n=1,2, \cdots)$ 两两不等.
(d) 满足题设且 $a_1 \neq 1$ 的数列 $\left\{a_n\right\}$ 存在.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见