科数网
试题 ID 10403
【所属试卷】
方浩考研数学终极预测(数二) 2021版
若 $z(x, y)=\int_0^{+\infty} \mathrm{e}^{-\frac{u^2}{x^2+x y+y^2}} \mathrm{~d} u$, 则 $\frac{x}{z} \frac{\partial z}{\partial x}+\frac{y}{z} \frac{\partial z}{\partial y}=$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
若 $z(x, y)=\int_0^{+\infty} \mathrm{e}^{-\frac{u^2}{x^2+x y+y^2}} \mathrm{~d} u$, 则 $\frac{x}{z} \frac{\partial z}{\partial x}+\frac{y}{z} \frac{\partial z}{\partial y}=$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见