科数网
试题 ID 10716
【所属试卷】
北京大学数学分析I(实验班)2022年期中考试题(回忆版)
考虑无穷级数
$$
\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}, \quad x \in[-\pi, \pi]
$$
1)证明级数在 $x=0, \pm \pi$ 处绝对收敛,在 $(-\pi, 0) \cup(0, \pi)$ 上条件收敛;
2) 记极限函数为 $S(x)$ ,证明 $S(x)$ 是 $[-\pi, 0) \cup(0, \pi]$ 上的连续函数;
3) 证明函数 $S(x)$ 在 0 处不连续。
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
考虑无穷级数
$$
\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}, \quad x \in[-\pi, \pi]
$$
1)证明级数在 $x=0, \pm \pi$ 处绝对收敛,在 $(-\pi, 0) \cup(0, \pi)$ 上条件收敛;
2) 记极限函数为 $S(x)$ ,证明 $S(x)$ 是 $[-\pi, 0) \cup(0, \pi]$ 上的连续函数;
3) 证明函数 $S(x)$ 在 0 处不连续。
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见