科数网
试题 ID 11110
【所属试卷】
南开大学研究生入学考试《高等代数》试题与解答
记 $V=\mathbb{R}[x]_4$ 为次数小于 4 的实系数一元多项式组成的线性空间, 定义 $V$ 上的映射 $\varphi$ 为 $\varphi(f(x))=f(x)-f(0)+f^{\prime}(x)$.
(1) 求 $\varphi$ 在基 $1, x, x^2, x^3$ 下的矩阵.
(2) 求 $\varphi$ 的特征值与特征向量.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
记 $V=\mathbb{R}[x]_4$ 为次数小于 4 的实系数一元多项式组成的线性空间, 定义 $V$ 上的映射 $\varphi$ 为 $\varphi(f(x))=f(x)-f(0)+f^{\prime}(x)$.
(1) 求 $\varphi$ 在基 $1, x, x^2, x^3$ 下的矩阵.
(2) 求 $\varphi$ 的特征值与特征向量.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见